Answer:
t = 3.48 s
Explanation:
The time for the maximum height can be calculated by taking the derivative of height function with respect to time and making it equal to zero:
[tex]h(t) = -16t^2+v_ot+h_o\\\\\frac{dh(t)}{dt}=0=-32t+v_o\\\\v_o = 32t[/tex]
where,
v₀ = initial speed = 110 ft/s
Therefore,
[tex]110 = 32t\\\\t = \frac{110}{32}\\\\[/tex]
t = 3.48 s
The masses of two heavenly bodies are 2×10‘16’ and 4×10 ‘22’ kg respectively and the distance between than is 30000km. find the gravitational force between them ? ans. 2.668× 10-9N
[tex]F = 5.93×10^{13}\:\text{N}[/tex]
Explanation:
Given:
[tex]m_1= 2×10^{16}\:\text{kg}[/tex]
[tex]m_2= 4×10^{22}\:\text{kg}[/tex]
[tex]r = 30000\:\text{km} = 3×10^7\:\text{m}[/tex]
Using Newton's universal law of gravitation, we can write
[tex]F = G\dfrac{m_1m_2}{r^2}[/tex]
[tex]\:\:\:\:=(6.674×10^{-11}\:\text{N-m}^2\text{/kg}^2)\dfrac{(2×10^{16}\:\text{kg})(4×10^{22}\:\text{kg})}{(3×10^7\:\text{m})^2}[/tex]
[tex]\:\:\:\:= 5.93×10^{13}\:\text{N}[/tex]
. A ball of mass 0.50 kg is rolling across a table top with a speed of 5.0 m/s. When the ball reaches the edge of the table, it rolls down an incline onto the floor 1.0 meter below (without bouncing). What is the speed of the ball when it reaches the floor?
Answer:
4
Explanation:
A 2.0 kg puck is at rest on a level table. It is pushed straight north with a constant force of 5N for 1.50 s and then let go. How far does the puck move from rest in 2.25 s?
Answer:
d = 6.32 m
Explanation:
Given that,
The mass of a puck, m = 2 kg
It is pushed straight north with a constant force of 5N for 1.50 s and then let go.
We need to find the distance covered by the puck when move from rest in 2.25 s.
We know that,
F = ma
[tex]a=\dfrac{F}{m}\\\\a=\dfrac{5}{2}\\\\a=2.5\ m/s^2[/tex]
Let d is the distance moved in 2.25 s. Using second equation of motion,
[tex]d=ut+\dfrac{1}{2}at^2\\\\d=0+\dfrac{1}{2}\times 2.5\times (2.25)^2\\\\d=6.32\ m[/tex]
So, it will move 6.32 m from rest in 2.25 seconds.
If a jet travels 350 m/s, how far will it travel each second?
Answer:
350
Explanation:
Since it travels 350 meters per second, the jet will travel 350 meters in one second.
which watch is more preferable for the measurement of time among pendulum, quartz and atomic watch
Answer:
pendulum, quartz
Explanation:
what are three effects of gravity
Answer:
effect on motation.effect on direction
how does laser works ?
Explanation:
Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.
A converging lens is used to focus light from a small bulb onto a book. The lens has a focal length of 10.0 cm and is located 40.0 cm from the book. Determine the distance from the lens to the light bulb.
Answer:
[tex]u=13.3cm[/tex]
Explanation:
From the question we are told that:
Focal Length [tex]F=10.0cm[/tex]
Distance [tex]d=40cm[/tex]
Generally the equation for Focal length is mathematically given by
[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}[/tex]
[tex]\frac{1}{10}=\frac{1}{u}+\frac{1}{40}[/tex]
[tex]\frac{1}{u}=\frac{3}{40}[/tex]
[tex]u=13.3cm[/tex]
Focal length is the distance from the center of the lens to principle foci. The distance of the from the lens to the light bulb is 13.3 cm.
The distance can be determined by the formula,
[tex]\bold {\dfrac 1{f} = \dfrac 1{u} + \dfrac 1{v} }[/tex]
Where,
f - focal length = 10 cm
u - distance of object = ?
v = distance of image = 40 cm
Put the values in the equation,
[tex]\bold {\dfrac 1{10} = \dfrac 1{u} + \dfrac 1{40} }\\\\\bold {\dfrac 1{u} = \dfrac 3{40}}\\\\\bold {\dfrac 1{u} = 13.3 cm}[/tex]
Therefore, the distance of the from the lens to the light bulb is 13.3 cm.
To know more about the focal length,
https://brainly.com/question/13091382
A roller coaster has a vertical loop with radius 25.7 m. With what minimum speed should the roller-coaster car be moving at the top of
the loop so that the passengers do not lose contact with the seats?
m/s
Answer:
15.88m/s
Explanation:
At the top of the roller coaster you will have three forces acting on the roller-coaster. See the image below. Fc is the centripetal force (for an object in circular motion), Fg is the gravitational force, and Fn is the normal force. To achieve the minimum speed we assume the roller-coaster is barely touching the vertical loop and so the normal force is zero. This leaves two acting forces.
[tex]F_g = F_c\\mg = \frac{m\times v^2}{r}\\v = \sqrt{gr} = \sqrt{9.81 \times 25.7} = 15.88 m/s[/tex]
1. There is a famous intersection in Kuala Lumpur, Malaysia, where thousands of vehicles pass each hour. A 750 kg Tesla Model S traveling south crashes into a 1250 kg Ford F-150 traveling east. What are the initial speeds of each vehicle before collision if they stick together after crashing into each other and move at an angle of 320 and a common velocity of 18 m/s.
Solution :
Let the positive [tex]x-axis[/tex] is along the East and the positive [tex]y[/tex] direction is along the north.
Given :
Mass of the Tesla car, [tex]m_1[/tex] = [tex]750 \ kg[/tex]
Mass of the Ford car, [tex]m_2 = 1250 \ kg[/tex]
Now let the initial velocity of Tesla car in the south direction be = [tex]-v_1j[/tex]
The initial momentum of Tesla car, [tex]p_1 = -750 \ v_1[/tex]
Let the initial velocity of Ford car in the east direction be = [tex]v_2 \ i[/tex]
So the initial momentum of the Ford car is [tex]p_2=1250\ v_2 \ i[/tex]
Therefore, the initial velocity of both the cars is [tex]p_i = p_1+p_2[/tex]
[tex]=1250 \ v_2 \ i - 750\ v_1 \ j[/tex]
Now the final velocity of both the cars is [tex]v = 18 \ m/s[/tex]
So the vector form is :
[tex]v = 18\cos 32\ i-18 \sin 32 \ j[/tex]
[tex]= 15.26 \ i - 9.54 \ j[/tex]
Therefore the momentum after the accident is
[tex]p_f=(m_1+m_2) \times v[/tex]
[tex]=(750+1250) \times (15.26 \ i - 9.54 \ j)[/tex]
[tex]= 30520\ i -19080\ j[/tex]
According to the law of conservation of momentum, we know
[tex]p_i = p_f[/tex]
[tex]1250 \ v_2 \ i - 750\ v_1 \ j[/tex] [tex]= 30520\ i -19080\ j[/tex]
[tex]1250 \ v_2 = 30520[/tex]
[tex]v_2=24.4 \ m/s[/tex]
From, [tex]750\ v_1 = 19080[/tex]
We get, [tex]v_1=25.4 \ m/s[/tex]
Therefore the speed of Tesla car before collision = 25.4 m/s
The speed of ford car before collision = 24.4 m/s
A charge is moving in a magnetic field that points to the
left
What direction can the charge move and experience no
magnetic force? Check all that apply.
O up
O down
Oleft
Oright
O into the screen
O out of the screen
Answer:
Magnetic Forces on Moving Charges. The magnetic force on a free moving charge is perpendicular to both the velocity of the charge and the magnetic field with direction given by the right hand rule.
The direction of the charge where it does not experience magnetic force is left and right. The correct option is C and D.
What is a magnetic field?A magnetic field is a region in space where a magnetic force can be observed. It is created by moving electric charges, such as electrons, and is characterized by the direction and strength of the force it exerts on other magnetic materials or moving charges.
Magnetic field lines are used to visualize the direction and strength of the magnetic field. They represent the path that a small magnetic north pole would follow if placed in the magnetic field. The direction of the magnetic field is given by the direction in which the north pole of a compass needle would point if placed in the field.
Magnetic flux is the measure of the strength of the magnetic field passing through a surface. It is given by the product of the magnetic field strength and the area of the surface, as well as the cosine of the angle between the magnetic field and the surface normal. The unit of magnetic flux is Weber (Wb).
Magnetic flux is important in many applications, such as electric motors and generators, where the interaction between the magnetic field and moving charges produces electrical energy. It is also used in magnetic imaging techniques, such as MRI, to visualize the internal structures of the human body.
Here in the question,
Options A (up), B (down), E (into the screen), and F (out of the screen) are all perpendicular to the direction of the magnetic field and so will experience a magnetic force.
Therefore, options C and D are correct i. e left and right.as they are parallel and anti-parallel to the direction of the magnetic field, respectively.
To learn about Ohm's law click:
brainly.com/question/29775285
#SPJ7
In December of 2011 they announced that a planet has been discovered in a habitable zone around a
star! It has clouds! It has twice the radius of the earth, but with the same density as earth, about 5.515 × 10^3kg/m3
. Find the new acceleration of gravity on the surface of this planet.
Explanation:
The density of earth [tex]\rho_E[/tex] is given by
[tex]\rho_E = \dfrac{M_E}{\left(\frac{4\pi}{3}R_E^3\right)}[/tex]
and in terms of this density, we can write the acceleration due to gravity on earth as
[tex]g_E =G\dfrac{M_E}{R_E^2} = \dfrac{4\pi G}{3}\rho_ER_E[/tex]
Similarly, the acceleration due to gravity [tex]g_P[/tex] on this new planet is given by
[tex]g_P = G\dfrac{M_P}{R_P^2} = G\dfrac{\frac{4\pi}{3}R_p^3\rho_P}{R_P^2}[/tex]
[tex]\:\:\:\:\:= \dfrac{4\pi G}{3}\rho_PR_P[/tex]
We know that this planet has the same density as earth and has a radius 2 times as large. We can then rewrite [tex]g_P[/tex] as
[tex]g_P = \dfrac{4\pi G}{3}\rho_E(2R_E)[/tex]
[tex]\:\:\:\:\:= 2\left(\dfrac{4\pi G}{3}\rho_ER_E\right) = 2g_E[/tex]
[tex]\:\:\:\:\:= 2(9.8\:\text{m/s}^2) = 19.6\:\text{m/s}^2[/tex]
A motor is designed to operate on 117 V and draws a current of 17.7 A when it first starts up. At its normal operating speed, the motor draws a current of 2.78 A. Obtain (a) the resistance of the armature coil, (b) the back emf developed at normal speed, and (c) the current drawn by the motor at one-third normal speed.
Answer:
Resistance of the armature coil = 6.61 ohms
Back emf developed at normal speed = 98.62 V (Approx.)
Current drawn by the motor at one-third normal speed = 12.73 A
Explanation:
Given:
Potential difference V = 117 V
Current = 17.7 A
Motor drawn current = 2.78 A
Find:
Resistance of the armature coil
Back emf developed at normal speed
Current drawn by the motor at one-third normal speed
Computation:
A] Resistance of the armature coil R = V/ I
Resistance of the armature coil = 117 / 17.7
Resistance of the armature coil = 6.61 ohms
B] Back emf developed at normal speed = V- IR
Back emf developed at normal speed = 117 V - (2.78 A)(6.61 ohms)
Back emf developed at normal speed = 117 V - 18.37
Back emf developed at normal speed = 98.62 V (Approx.)
C] Current drawn by the motor at one-third normal speed = 17.7 A - (98.62/3)/(6.61 ohms)
Current drawn by the motor at one-third normal speed = 17.7 - 4.97
Current drawn by the motor at one-third normal speed = 12.73 A
The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3. Express your answer numerically in joules.
The question is incomplete. The complete question is :
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 .
Find the energy U1 of the dielectric-filled capacitor. I got U1=2.99*10^-10 J which I know is correct. Now I need these:
1. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric.
2. The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3.
Solution :
Given :
[tex]A = 10 \ cm^2[/tex]
[tex]$=0.0010 \ m^2$[/tex]
d = 10 mm
= 0.010 m
Then, Capacitance,
[tex]$C=\frac{k \epsilon_0 A}{d}$[/tex]
[tex]$C=\frac{8.85 \times 10^{12} \times 3 \times 0.0010}{0.010}$[/tex]
[tex]$C=2.655 \times 10^{12} \ F$[/tex]
[tex]$U_1 = \frac{1}{2}CV^2$[/tex]
[tex]$U_1 = \frac{1}{2} \times 2.655 \times 10^{-12} \times (15V)^2$[/tex]
[tex]$U_1=2.987 \times 10^{-10}\ J$[/tex]
Now,
[tex]$C_k=\frac{1}{2} \frac{k \epsilon_0}{d} \times \frac{A}{2}$[/tex]
And
[tex]$C_{air}=\frac{1}{2} \frac{\epsilon_0}{d} \times \frac{A}{2}$[/tex]
In parallel combination,
[tex]$C_{eq}= C_k + C_{air}$[/tex]
[tex]$C_{eq} = \frac{1}{2} \frac{\epsilon_0 A}{d}(1+k)$[/tex]
[tex]$C_{eq} = \frac{1}{2} \times \frac{8.85 \times 10^{-12} \times 0.0010}{0.01} \times (1+3)$[/tex]
[tex]$C_{eq} = 1.77 \times 10^{-12}\ F$[/tex]
Then energy,
[tex]$U_2 =\frac{1}{2} C_{eq} V^2$[/tex]
[tex]$U_2=\frac{1}{2} \times 1.77 \times 10^{-12} \times (15V)^2$[/tex]
[tex]$U_2=1.99 \times 10^{-10} \ J$[/tex]
b). Now the charge on the [tex]\text{capacitor}[/tex] is :
[tex]$Q=C_{eq} V$[/tex]
[tex]$Q = 1.77 \times 10^{-12} \times 15 V$[/tex]
[tex]$Q = 26.55 \times 10^{-12} \ C$[/tex]
Now when the capacitor gets disconnected from battery and the [tex]\text{dielectric}[/tex] is slowly [tex]\text{removed the rest}[/tex] of the way out of the [tex]\text{capacitor}[/tex] is :
[tex]$C_3=\frac{A \epsilon_0}{d}$[/tex]
[tex]$C_3 = \frac{0.0010 \times 8.85 \times 10^{-12}}{0.01}$[/tex]
[tex]$C_3=0.885 \times 10^{-12} \ F$[/tex]
[tex]$C_3 = 0.885 \times 10^{-12} \ F$[/tex]
Without the dielectric,
[tex]$U_3=\frac{1}{2} \frac{Q^2}{C}$[/tex]
[tex]$U_3=\frac{1}{2} \times \frac{(25.55 \times 10^{-12})^2}{0.885 \times 10^{-12}}$[/tex]
[tex]$U_3=3.98 \times 10^{-10} \ J$[/tex]
En la siguiente expresión matemáticas w=mg el peso w con relación a se relaciona con la masa m en una proporción
a) Directamente proporcional b) Inversamente proporcional c) Es constante
d) Ninguna de las anteriore
Answer:
a) Directamente proporcional
Explanation:
El peso se puede definir como la fuerza que actúa sobre un cuerpo o un objeto como resultado de la gravedad.
Matemáticamente, el peso de un objeto viene dado por la fórmula;
[tex] Peso = mg [/tex]
Donde;
m es la masa del objeto.
g es la aceleración debida a la gravedad.
De la expresión matemática, podemos deducir que el valor del peso de un objeto es directamente proporcional a la masa del objeto.
Por lo tanto, un aumento en la masa de un objeto provocaría un aumento en el peso del objeto y viceversa.
A bullet 2cm log is fired at 420m/s and passes straight a 10cm thick board exiting at 280m/s
Complete question:
A bullet 2 cm long is fired at 420m/s and passes straight through a 10.0 cm thick board, exiting at 280m/s? What is the average acceleration of the bullet through the board?
Answer:
The average acceleration of the bullet through the board is -4.083 x 10⁵ m/s²
Explanation:
Given;
initial velocity of the bullet, u = 420 m/s
final velocity of the bullet, v = 280 m/s
length of the bullet, d₁ = 2 cm
thickness of the board, d₂ = 10 cm
total distance penetrated by the bullet through the board;
d = d₁ + d₂ = 2 cm + 10 cm = 12 cm = 0.12 m
The average acceleration of the bullet through the board is calculated as;
[tex]v^2 = u^2 + 2ad\\\\2ad = v^2 - u^2\\\\a = \frac{v^2 - u^2}{2d} \\\\a = \frac{(280^2) - (420^2)}{2(0.12)} = -4.083 \times 10^{5} \ m/s^2[/tex]
Therefore, the average acceleration of the bullet through the board is -4.083 x 10⁵ m/s²
The kinetic theory of gases states that the kinetic energy of a gas is directly proportional to the temperature of the gas.
a. True
b. False
Answer:
true
Explanation:
The kinetic energy of a gas is directly proportional to the temperature of the gas.because temperature is the average kinetic energy of a substance
I hope this helps
on a horizontal axis whose unit is the meter, a linear load ranging from 0 to 1 ma a linear load distribution = 2 nC / m.
determine the modulus of the electric field created by the previous loaded bar at the point A of abscissa 2m (we have to find the relation between l, which is the distance between the elementary bar and the point A and x which sweeps the segment [0: 1]
Answer:
The correct answer is - 8.99N/C
Explanation:
[tex]dE=k\dfrac{dq}{x^2}\\ dq=\lambda{dx}\\ \lambda=2nC/m\\ dq=2dxnC\\ dE=k\dfrac{2dx}{x^2}\\ E=2k\int_1^2\dfrac{dx}{x^2}\\ E=2k(\frac{-1}{x})_1^2=k\times10^{-9}N/C\\ E=8.99\times10^9\times10^{-9}N/C\\ E=8.99N/C\\dE=k[/tex]
9. From this lab, we learn that the electric field and electric potential depend on both, the magnitude of the source charge (q), and the distance from the source charge (r). If we were to increase the magnitude of our source charge from 1 nC to 5 nC, then the magnitudes of the electric field and electric potential would be ____.(you can test this on the animation by dragging five 1 nC charges on top of each other and measuring E and V at a distance of 1 m)
Answer:
the electric field and the electric potential increase 5 times
Explanation:
The electric field created by a point charge is
E = k q / r²
in this case the charge changes from q₁ = 1 10⁺⁰ C to q₂ = 5 10⁻⁹ C
with the electric field is proportional to the charge
E₅ = 5 E₁
the electrical power for a point charge is
V = k q / r
as the electric power is proportional to the charge
V₅ = 5 V₁
consequently both the electric field and the electric potential increase 5 times
An electric field is produced by a charged object:
[tex]\to E = \frac{k q}{r^2}\\\\[/tex]
In this situation, the charge shifts:
[tex]\to q_1 = 1 10^{\circ}\ C \\\\ \to q_2 = 5 \times 10^{-9}\ C[/tex]
so with electric field remaining proportional to the charge
[tex]\to E_5 = 5 E_1[/tex]
The electrical power consumed for a point charge:
[tex]\to V = \frac{k q}{ r}[/tex]
since the electric power is related to the charge
[tex]\to V_5 = 5 V_1[/tex]
As a result, both the electric field as well as the electric potential increase by 5 times.
Learn more:
brainly.com/question/2017486
What is mechanical advantage?
O A. Output force divided by input force
O B. Input work divided by output work
O C. Output work divided by input work
O D. Input force divided by output force
Answer:
0A.Output force divided by input force.
Cho dòng điện xoay chiều trong sản xuất và sinh hoạt ở nước ta có tần số f = 50Hz. Tính chu kỳ T và tần số góc ω?
Answer:
T = 1/f = 1/50(s)
ω = 2πf = 100π (rad/s)
(vote 5 sao nhó :3 )
a point object is 10 cm away from a plane mirror while the eye of an observer(pupil diameter is 5.0 mm) is 28 cm a way assuming both eye and the point to be on the same line perpendicular to the surface find the area of the mirror used in observing the reflection of the point
Answer:
1.37 mm²
Explanation:
From the image attached below:
Let's take a look at the two rays r and r' hitting the same mirror from two different positions.
Let x be the distance between these rays.
[tex]d_o =[/tex] distance between object as well as the mirror
[tex]d_{eye}[/tex] = distance between mirror as well as the eye
Thus, the formula for determining the distance between these rays can be expressed as:
[tex]x = 2d_o tan \theta[/tex]
where; the distance between the eye of the observer and the image is:
[tex]s = d_o + d_{eye}[/tex]
Then, the tangent of the angle θ is:
[tex]tan \theta = \dfrac{R}{d_o+d_{eye}}[/tex]
replacing [tex]tan \theta = \dfrac{R}{d_o+d_{eye}}[/tex] into [tex]x = 2d_o tan \theta[/tex], we have:
[tex]x = 2d_o \Big( \dfrac{R}{d_o+d_{eye}}\Big)[/tex]
[tex]x = 2(10) \Big( \dfrac{0.25}{10+28}\Big)[/tex]
[tex]x = 20\Big( \dfrac{0.25}{38}\Big) cm[/tex]
x = (0.13157 × 10) mm
x = 1.32 mm
Finally, the area A = π r²
[tex]A = \pi(\frac{x}{2})^2[/tex]
[tex]A = \pi(\frac{1.32}{2})^2[/tex]
A = 1.37 mm²
If a conducting loop of radius 10 cm is onboard an instrument on Jupiter at 45 degree latitude, and is rotating with a frequency 2 rev/s; What is the maximum emf induced in this loop? If its resistance is 0.00336 ohms, how much current is induced in this loop? And what is the maximum power dissipated in the loop due to its rotation in Jupiter's magnetic field?
Answer:
a) fem = - 2.1514 10⁻⁴ V, b) I = - 64.0 10⁻³ A, c) P = 1.38 10⁻⁶ W
Explanation:
This exercise is about Faraday's law
fem = [tex]- \frac{ d \Phi_B}{dt}[/tex]
where the magnetic flux is
Ф = B x A
the bold are vectors
A = π r²
we assume that the angle between the magnetic field and the normal to the area is zero
fem = - B π 2r dr/dt = - 2π B r v
linear and angular velocity are related
v = w r
w = 2π f
v = 2π f r
we substitute
fem = - 2π B r (2π f r)
fem = -4π² B f r²
For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T
we reduce the magnitudes to the SI system
f = 2 rev / s (2π rad / 1 rev) = 4π Hz
we calculate
fem = - 4π² 428 10⁻⁶ 4π 0.10²
fem = - 16π³ 428 10⁻⁶ 0.010
fem = - 2.1514 10⁻⁴ V
for the current let's use Ohm's law
V = I R
I = V / R
I = -2.1514 10⁻⁴ / 0.00336
I = - 64.0 10⁻³ A
Electric power is
P = V I
P = 2.1514 10⁻⁴ 64.0 10⁻³
P = 1.38 10⁻⁶ W
5. Steve is driving in his car to take care of some errands. The first errand has him driving to a location 2 km East and 6 km North of his starting location. Once he completes that errand, he drives to the second one which is 4 km East and 2 km South of the first errand. What is the magnitude of the vector that describes how far the car has traveled from its starting point, rounded to the nearest km?
Answer:
gshshs
Explanation:
hshsksksksbsbbshd
Express 6revolutions to radians
Answer:
About 37.70 radians.
Explanation:
1 revolution = 2[tex]\pi[/tex] radians
∴ 6 revolutions = (6)(2[tex]\pi[/tex] radians)
6 revolutions = 37.6991 or ≈ 37.70 radians
Please help, I really need this. Thanks
Answer
Delta Q = change in thermal energy = c M * change in temperature
change in temperature = Q / (c * M)
change in temperature = -12 J / (390 J / Kg*deg * .012 kg
change in temp = -12 / (390 * .012) = - 2.56 deg C
a volcano that may erupt again at some time in the distant future is
A meter stick has only two forces acting on it, of equal sizes at the ends that are in opposite directions. (I have magically turned gravity Off.) Is the stick in equilibrium? Explain your answer.
Answer:
Explanation:
Equilibrium is a state in which the algebraic sum of all forces acting on an object is zero. Thus the object has no force acting on it. The types are: stable, unstable and neutral equilibrium. While a torque is a turning force which are equal but acts in an opposite direction. When applied to on object, it constitute a turning effect. Example is the force applied on a tap, handle wheel of a car etc.
In the given question, the condition stated shows that the stick would experience a torque, thus not in equilibrium. Since the forces at its ends are in opposite directions, then it continues to rotate about its axis.
A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 ksi. The bar is subjected to a steady torsional stress of 15 kpsi and an alternating bending stress of 25 ksi. Find the factor of safety guarding against a static failure, and either the factor of safety guarding against a fatigue failure or the expected life of the part. For the fatigue analysis use Modified Goodman criterion.
Answer:
The correct solution is:
(a) 1.66
(b) 1.05
Explanation:
Given:
Bending stress,
[tex]\sigma_b = 25 \ kpsi[/tex]
Torsional stress,
[tex]\tau= 15 \ kpsi[/tex]
Yield stress of steel bar,
[tex]\delta_y = 60 \ kpsi[/tex]
As we know,
⇒ [tex]\sigma_{max}^' \ = \sqrt{\sigma_b^2 + 3 \gamma^2}[/tex]
[tex]= \sqrt{(25)^2+3(15)^2}[/tex]
[tex]=36.055 \ kpsi[/tex]
(a)
The factor of safety against static failure will be:
⇒ [tex]\eta_y = \frac{\delta_y}{\sigma_{max}^'}[/tex]
By putting the values, we get
[tex]=\frac{60}{36.055}[/tex]
[tex]=1.66[/tex]
(b)
According to the Goodman line failure,
[tex]\sigma_a = \sigma_b = 25 \ kpsi[/tex]
[tex]S_e = 40 \ kpsi[/tex]
[tex]\sigma_m = \sqrt{3} \tau[/tex]
[tex]=\sqrt{3}\times 15[/tex]
[tex]=26 \ kpsi[/tex]
[tex]Sut = 80 \ kpsi[/tex]
⇒ [tex]\frac{\sigma_a}{S_e} +\frac{\sigma_m}{Sut} =\frac{1}{\eta_y}[/tex]
[tex]\frac{25}{40}+\frac{26}{80}=\frac{1}{\eta_y}[/tex]
[tex]\eta_y = 1.05[/tex]
a stone is thrown vertically upwards with a velocity of 20 m per second determine the total time of flight of stone in air
Answer:
Explanation:
The best way to do this is to remember the rule about the halfway mark in a parabolic path. At a trajectory's half way point in its travels, it will be at its max height. To get the total time in the air, we take that time at half way and double it. Here's what we know that we are told:
initial velocity is 20 m/s
Here's what we know that we are NOT told:
a = -9.8 m/s/s and
final velocity is 0 at an object's max height in parabolic motion.
We will use the equation:
[tex]v=v_0+at[/tex] where v is final velocity and v0 is initial velocity. Filling in:
0 = 20 + (-9.8)t and
-20 = -9.8t so
t = 2 seconds. The stone reaches its max height 2 seconds after it is thrown; that means that after another 2 seconds it will be on the ground. Total air time is 4 seconds.