Answer:
B
Explanation:
P1/P1 = 40/20
=2
i don't understand this, can someone help please??
Explanation:
N2 + H2 --> NH3
balance them:
N2 + 3 H2 --> 2 NH3
so if 6 moles of N2 react, 12 moles of NH3 will form.
(you have to look at the big number in front, in this case its N2 and 2 NH3, therefore the amount of N2 will produce double the amount of NH3 )
A large metal sphere has three times the diameter of a smaller sphere and carries three times the charge. Both spheres are isolated, so their surface charge densities are uniform. Compare (a) the potentials (relative to infinity) and (b) the electric field strengths at their surfaces.
Answer:
A. Equals to that of the smaller sphere
B. 3 times less than that of the smaller sphere
Explanation:
(a) Equals to that of the smaller sphere
The potential of an isolated metal sphere, with charge Q and radius R, is kQ=R, so a sphere with charge 3Q and radius 3R has the same potential
b) 3 times less than that of the smaller sphere
However, the electric field at the surface of the smaller sphere is ?=? 0 = kQ=R2 , so tripling Q and R reduces the surface field by a factor of 1/3
Two forces A and B act at a point. If their resultant is [given by] (B - A) in the direction of B, then
A. A and B are equal
B. A is greater than B
C. the angle between A and B is 0°
D. the angle between A and B is 90°
E. the angle between A and B is 180°
A light spectrum is formed on the screen using a diffraction grating. The entire apparatus made up of laser, grating and the screen is now immersed in a liquid with refractive index 1.33. Do the bright spots on the screen get closer together, farther apart, remain the same or disappear entirely? Explain
Answer:
the points are closer to each other
Explanation:
The expression for the diffraction of a grating is
d sin θ = m λ
sin θ = m λ / d (1)
where d is the distance between slits and m is the order of diffraction, the most general is to work in the order m = 1, the angle te is the angle of diffraction
When we immerse the apparatus in a medium with refractive index n = 1.33, the light emitted by the laser must comply
v = λ f
where v is the speed of light in the medium, the frequency remains constant
velocity and refractive index are related
n = c / v
v = c / n
we substitute
c / n = λf
λ = [tex]\frac{c}{f} \ \frac{1}{n}[/tex]
λ = λ₀ / m
where λ₀ is the wavelength in vacuum
we substitute is equation 1
d sin θ = m λ₀ / n
sin θ = λ₀/ n d
sin θ = [tex]\frac{1}{n}[/tex] sin θ₀
we can see that the value of the sine is redueced since the refractive index is greater than 1,
consequently the points are closer to each other
Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in J) is stored in this inductor when 21.0 A of current flows through it? J (c) How fast (in s) can it be turned off if the induced emf cannot exceed 3.00 V? s
Answer:
(a) The self inductance, L = 21.95 mH
(b) The energy stored, E = 4.84 J
(c) the time, t = 0.154 s
Explanation:
(a) Self inductance is calculated as;
[tex]L = \frac{N^2 \mu_0 A}{l}[/tex]
where;
N is the number of turns = 1000 loops
μ is the permeability of free space = 4π x 10⁻⁷ H/m
l is the length of the inductor, = 45 cm = 0.45 m
A is the area of the inductor (given diameter = 10 cm = 0.1 m)
[tex]A = \pi r^2 = \frac{\pi d^2}{4} = \frac{\pi \times (0.1)^2}{4} = 0.00786 \ m^2[/tex]
[tex]L = \frac{(1000)^2 \times (4\pi \times 10^{-7}) \times (0.00786)}{0.45} \\\\L = 0.02195 \ H\\\\L = 21.95 \ mH[/tex]
(b) The energy stored in the inductor when 21 A current ;
[tex]E = \frac{1}{2}LI^2\\\\E = \frac{1}{2} \times (0.02195) \times (21) ^2\\\\E = 4.84 \ J[/tex]
(c) time it can be turned off if the induced emf cannot exceed 3.0 V;
[tex]emf = L \frac{\Delta I}{\Delta t} \\\\t = \frac{LI}{emf} \\\\t = \frac{0.02195 \times 21}{3} \\\\t = 0.154 \ s[/tex]
Question
Name and write briefly on the international body
that Introduced si units .
Answer:
International System of Units. it was established in 1960 by the 11the General Conference on Weights and Measures
A solenoid has a length , a radius , and turns. The solenoid has a net resistance . A circular loop with radius is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance . At a time , the solenoid is connected to a battery that supplies a potential . At a time , what current flows through the outer loop
This question is incomplete, the complete question is;
A solenoid has a length 11.34 cm , a radius 1.85 cm , and 1627 turns. The solenoid has a net resistance of 144.9 Ω . A circular loop with radius of 3.77 cm is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance of 1651.6 Ω. At a time of 0 s , the solenoid is connected to a battery that supplies a potential 34.95 V. At a time 2.58 μs , what current flows through the outer loop?
Answer:
the current flows through the outer loop is 1.3 × 10⁻⁵ A
Explanation:
Given the data in the question;
Length [tex]l[/tex] = 11.34 cm = 0.1134 m
radius a = 1.85 cm = 0.0185 m
turns N = 1627
Net resistance [tex]R_{sol[/tex] = 144.9 Ω
radius b = 3.77 cm = 0.0377 m
[tex]R_o[/tex] = 1651.6 Ω
ε = 34.95 V
t = 2.58 μs = 2.58 × 10⁻⁶ s
Now, Inductance; L = μ₀N²πa² / [tex]l[/tex]
so
L = [ ( 4π × 10⁻⁷ ) × ( 1627 )² × π( 0.0185 )² ] / 0.1134
L = 0.003576665 / 0.1134
L = 0.03154
Now,
ε = d∅/dt = [tex]\frac{d}{dt}[/tex]( BA ) = [tex]\frac{d}{dt}[/tex][ (μ₀In)πa² ]
so
ε = μ₀n [tex]\frac{dI}{dt}[/tex]( πa² )
ε = [ μ₀Nπa² / [tex]l[/tex] ] [tex]\frac{dI}{dt}[/tex]
ε = [ μ₀Nπa² / [tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
I = ε/[tex]R_o[/tex] = [ μ₀Nπa² / [tex]R_o[/tex][tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
so we substitute in our values;
I = [ (( 4π × 10⁻⁷ ) × 1627 × π(0.0185)²) / (1651.6 ×0.1134) ] [ ( 34.95 / 0.03154)e^( -2.58 × 10⁻⁶ / 144.9 ) ]
I = [ 2.198319 × 10⁻⁶ / 187.29144 ] [ 1108.116677 × e^( -1.7805 × 10⁻⁸ )
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.116677 × 0.99999998 ]
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.11665 ]
I = 1.3 × 10⁻⁵ A
Therefore, the current flows through the outer loop is 1.3 × 10⁻⁵ A
Answer:
1.28 *10^-5 A
Explanation:
Same work as above answer. Needs to be more precise
which watch is more preferable for the measurement of time among pendulum, quartz and atomic watch
Answer:
pendulum, quartz
Explanation:
Each rarefraction on a longitudinal wave correspond to what point on a transverse wave?
The kinetic theory of gases states that the kinetic energy of a gas is directly proportional to the temperature of the gas.
a. True
b. False
Answer:
true
Explanation:
The kinetic energy of a gas is directly proportional to the temperature of the gas.because temperature is the average kinetic energy of a substance
I hope this helps
what is threshold frequency?
Answer:
"the minimum frequency of radiation that will produce a photoelectric effect."
Explanation:
That answer was derived from gogle cuz my explanations was harder to explain but good luck
what is simple machine?
Explanation:
Those tools that helps to make our work easier ,faster and more convenient in our daily life it is called simple Machine.
Three wires are connected at a branch point. One wire carries a positive current of 18 A into the branch point, and a second wire carries a positive current of 7 A away from the branch point. Find the current carried by the third wire into the branch point.
Answer:
The current in third branch is 11 A.
Explanation:
incoming current in one branch = 18 A
outgoing current in the other branch = 7 A
let the current in the third branch is i.
According to the Kirchoff's fist law in electricity
incoming current = out going current
18 = 7 + i
i = 11 A
The current in third branch is 11 A.
Describe how the words Science and optics would appear when viewed in a plane mirror?
Answer:
Lateral inversion will occur in a plane mirror.
Explanation:
When words are displayed in a plane or flat mirror, the result is that if the words are displayed left, they change to right and if they were normally displayed right, they change to left. This phenomenon is known as lateral inversion. So, this will apply to the words, Science and optics. Only the sides will be interchanged.
A plane mirror reflects light, therefore, the image that is produced by it remains the same size. The image produced will not appear upside down. Only the sides will be interchanged.
if a projectile travels in the air for 6 seconds when does the projectile reach its highest point
This question deals with projectile motion, which is a motion on both the x-axis and y-axis, simultaneously. The total time of flight of the projectile trajectory is given, while the time to reach the highest point of the projectile is required to be found.
The projectile will reach the highest point in "3 seconds".
The total time of flight of a projectile is the time during which the projectile remains in the air. For a projectile motion that ends up on the same horizontal level, from where it started, the time to reach the highest point, is equal to half of the total time of flight.
In other words, the projectile motion takes the same time, to go from the starting level to the highest point (i.e upward motion), as the time taken to reach the starting level from the highest point (i.e downward motion).
[tex]t = \frac{1}{2}T[/tex]
where,
t = time to reach the highest point = ?
T = total time of flight = 6 seconds
Therefore,
[tex]t - \frac{1}{2}(6\ seconds)[/tex]
t = 3 seconds
Learn more about the projectile motion here:
https://brainly.com/question/20689870?referrer=searchResults
These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor
Answer:
Following are the solution to the given question:
Explanation:
For charging plates that are connected in a similar manner:
Calculating the total charge:
[tex]\to q =q_1 + q_2 = C_1V_1 +C_2V_2 =1320 + 2714 = 4034 \mu C[/tex]
Calculating the common potential:
[tex]\to V = \frac{q}{C}= \frac{q}{(C_1 + C_2)} =\frac{4034}{6.8} = 593 \ V\\\\[/tex]
Calculating the charge after redistribution:
[tex]When: \\\\q = q_{1}' + q_{2}' = q_1 + q_2[/tex]
[tex]\to q_{1}' = C_1V = 2.2 \times 593 = 1305\ \mu C\\ \\ \to q_{2}' = C_2V = 4.6 \times 593 = 2729 \ \mu C[/tex]
What is the name of the compound br8P4
Answer:
Octabromine tetraphosphide
Explanation:
This compound has in its formula:
- Eight bromines
- Four phosphorous
8 → octa prefix
4 → tetra prefix
Right answer is Octabromine tetraphosphide
A runner has a temperature of 40°c and is giving off heat at the rate of 50cal/s (a) What is the rate of heat loss in watts? (b) How long will it take for this person's temperature to return to 37°c if his mass is 90kg.
Answer:
(a) 209 Watt
(b) 4482.8 seconds
Explanation:
(a) P = 50×4.18
Where P = rate of heat loss in watt
P = 209 Watt
Applying,
Q = cm(t₁-t₂)................ Equation 1
Where Q = amount of heat given off, c = specific heat capacity capacity of human, m = mass of the person, t₁ and t₂ = initial and final temperature.
From the question,
Given: m = 90 kg, t₁ = 40°C, t₂ = 37°C
Constant: c = 3470 J/kg.K
Substtut these values into equation 1
Q = 90×3470(40-37)
Q = 936900 J
But,
P = Q/t.............. Equation 2
Where t = time
t = Q/P............ Equation 3
Given: P = 209 Watt, Q = 936900
Substitute into equation 3
t = 936900/209
t = 4482.8 seconds
A kind of variable that a researcher purposely changes in investigation is
Answer:
independent variable
Explanation:
what is science ? what qualities do we deal in deal in physic ?
science is all about the world around us
A long string is moved up and down with simple harmonic motion with a frequency of 46 Hz. The string is 579 m long and has a total mass of 46.3 kg. The string is under a tension of 3423 and is fixed at both ends. Determine the velocity of the wave on the string. What length of the string, fixed at both ends, would create a third harmonic standing wave
Answer:
a) [tex]v=206.896m/s[/tex]
b) [tex]L=6.749m[/tex]
Explanation:
From the question we are told that:
Frequency [tex]F=46Hz[/tex]
Length [tex]l=579m[/tex]
Total Mass [tex]T=4.3kg[/tex]
Tension [tex]T=3423[/tex]
a)
Generally the equation for velocity is mathematically given by
[tex]v=\sqrt{\frac{T}{\rho}}[/tex]
Where
[tex]\pho=m*l\\\\\pho=46*579\\\\\pho=0.0799kg/m[/tex]
Therefore
[tex]v=\sqrt{\frac{3423}{0.0799}}[/tex]
[tex]v=206.896m/s[/tex]
b)
Generally the equation for length of string is mathematically given by
[tex]L=\frac{3\lambda}{2}[/tex]
Where
[tex]\lambda=\frac{v}{f}[/tex]
[tex]\lambda=\frac{206.89}{46}[/tex]
[tex]\lambda=4.498[/tex]
Therefore
[tex]L=\frac{3*4.498}{2}[/tex]
[tex]L=6.749m[/tex]
An object whose weight is 100 lbf experiences a decrease in kinetic energy of 500 ft lbf and an increase in potential energy of 1500 ft lbf. The initial velocity and elevation of the object, each relative to the surface of the earth, are 40 ft/s and 30 ft, respectively. If g 5 32.2 ft/s2 , determine:
(a) the final velocity, in ft/s.
(b) the final elevation, in ft.
Answer:
a) [tex]v_2=35.60ft/sec[/tex]
b) [tex]h_2=45ft[/tex]
Explanation:
From the question we are told that:
Weight [tex]W=100lbf[/tex]
Decrease in kinetic energy [tex]dK.E= 500 ft lbf[/tex]
Increase in potential energy [tex]dP.E =1500 ft lbf.[/tex]
Velocity [tex]V_1=40[/tex]
Elevation [tex]h=30ft[/tex]
[tex]g=32.2 ft/s2[/tex]
a)
Generally the equation for Change in Kinetic Energy is mathematically given by
[tex]dK.E=\frac{1}{2}m(v_1^2-v_2^2)[/tex]
[tex]500=\frac{1}{2}*\frac{100}{32.2}(v_1^2-v_2^2)[/tex]
[tex]v_2=35.60ft/sec[/tex]
b)
Generally the equation for Change in Potential Energy is mathematically given by
[tex]dP.E=mg(h_2-h_1)[/tex]
[tex]1500=mg(h_2-h_1)[/tex]
[tex]h_2=45ft[/tex]
What is cubical expansivity of liquid while freezing
Answer:
"the ratio of increase in the volume of a solid per degree rise of temperature to its initial volume" -web
Explanation:
tbh up above ✅
Answer:
cubic meter
Explanation:
Increase in volume of a body on heating is referred to as volumetric expansion or cubical expansion
A 20 N south magnetic force pushes a charged particle traveling with a velocity of 4 m/s west through a 5 T magnetic field pointing downwards . What is the charge of the particle ?
Answer:
Charge of the particle is 1 coulomb.
Explanation:
Force, F:
[tex]{ \bf{F=BeV}}[/tex]
F is magnetic force.
B is the magnetic flux density.
e is the charge of the particle.
V is the velocity
[tex]{ \sf{20 = (5 \times e \times 4)}} \\ { \sf{20e = 20}} \\ { \sf{e = 1 \: coulomb}}[/tex]
A political campaign manager must decide whether to emphasize television advertisements or letters to potential voters in a reelection campaign. Describe the production function for campaign votes.
A. Campaign managers produce campaign votes.
B. Reelection campaigns produce campaign votes.
C. Television advertisements and campaign votes produce letters to potential voters.
D. Television advertisements and letters to potential voters produce reelection campaigns.
E. Television advertisements and letters to potential voters produce campaign votes.
How might information about this function (such as the shape of the isoquants) help the campaign manager plan strategy?
A. If the marginal rate of technical substitution of television advertisements for letters to potential voters is constant, then the campaign manager should use a combination of the two inputs.
B. If television advertisements and letters to potential voters are perfect complements, then the campaign manager should use them in fixed proportions.
C. If television advertisements and letters to potential voters are perfect substitutes, then the campaign manager should use them in fixed proportions.
D. If the isoquant curves for television advertisements and letters to potential voters are convex, then the campaign manager should use only the cheaper input per vote.
E. If the isocost lines for television advertisements and letters to potential voters are convex, then the campaign manager should use a combination of the two inputs.
Answer:
First answer - (E)
Second answer - (B)
Explanation:
The trade-off here is between TV ADVERTISEMENTS and LETTERS TO POTENTIAL VOTERS. The campaign manager for the candidate who is running for reelection, is trying to decide which of the two factors he should use more of or emphasize. The production function for campaign votes can be simplified as
TVAD + LTPV = CV
This is the production function for campaign votes.
PART A
Describe the production function for campaign votes (in words).
ANSWER: (E)
Television advertisements and (or 'plus') letters to potential voters, produce (or 'equal') campaign votes.
PART B
How might information about this function (such as the shape of the isoquants) help the campaign manager plan strategy?
ANSWER: (B)
If television advertisements and letters to potential voters are perfect complements (complements are goods or actions that 'must' go together or be used together) then the campaign manager should use them in fixed proportions (e.g. in a ratio of 50:50).
A cataract is a clouding or opacity that develops in the eye's lens, often in older people. In extreme cases, the lens of the eye may need to be removed. What effect would this have on someone?
a. He would become nearsighted.
b. He would become farsighted.
c. He would become neither nearsighted nor farsighted.
Answer:
b. He would become farsighted.
Explanation:
A cataract is defined as a medical condition where a person eyes becomes partially opaque and the person is not bale to see properly.
This is mainly caused due to aging or any injury in the eyes tissue which make up the lens of the eye.
It is the clouding of the lens of the eyes or opacity of the eyes. When treating cataract, in some cases the lens of the eyes are needed to be removed. This may lead to person becoming far sighted.
Therefore, the correct option is (b).
A string has its 4th harmonic at 31.5 Hz. What is the frequency of its third harmonic?
Answer:
The answer would be 7.5 Hz.
Your physics TA has a far point of 0.759 m from her eyes and is able to see distant objects in focus when wearing glasses with a refractive power of −1.35 D. Determine the distance between her glasses and eyes.
Answer:
[tex]d=0.019m[/tex]
Explanation:
From the question we are told that:
Far point [tex]x=0.759m[/tex]
Refractive power [tex]P=-1.35 D.[/tex]
Generally, the equation for Focal length is mathematically given by
[tex]F=\frac{1}{P}[/tex]
[tex]F=\frac{1}{-1.35}[/tex]
[tex]F=-0.74m[/tex]
Therefore
[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}[/tex]
Where
[tex]u=o[/tex]
[tex]\frac{1}{-0.74}=\frac{1}{0}+\frac{1}{v}[/tex]
[tex]v=-0.74m[/tex]
Therefore,The between her glasses and eyes
[tex]d=x-v[/tex]
[tex]d=0.759-0.74m[/tex]
[tex]d=0.019m[/tex]
If car A passes car B, then car A must be
A. accelerating at a greater rate than car B.
B. moving faster than car B, but not necessarily accelerating
C. accelerating
D. moving faster than car B and accelerating more than car B
Answer:
B. moving faster than car B, but not necessarily accelerating
Explanation:
Velocity is the speed of something. So car A's velocity is greater than car B but does not mean car A is accelerating.
Si un resorte de constante elástica 1300 n/m se comprime 12 cm ¿Cuanta energía almacena? Y si estira 12cm ¿Cuanta energía almacena?
La energía que almacena el resorte cuando se comprime y estira 12 cm es 9,4 J.
La energía potencial elástica del resorte se puede calcular con la siguiente ecuación:
[tex] E_{p} = \frac{1}{2}kx^{2} [/tex]
En donde:
k: es la constante del resorte = 1300 N/m
x: es la distancia de compresión o de elongación = 12 cm = 0,12 m
Dado que la energía es proporcional al cuadrado de la distancia recorrida por el resorte (x), la energía almacenada por el resorte durante la compresión será la misma que la energía almacenada por la elongación.
Por lo tanto, la energía almacenada es:
[tex]E_{p} = \frac{1}{2}kx^{2} = \frac{1}{2}1300 N/m*(0,12 m)^{2} = 9,4 J[/tex]
Entonces, la energía del resorte cuando se comprime y cuando se estira es la misma, a saber 9,4 J.
Para saber más sobre energía potencial visita este link: https://brainly.com/question/156316?referrer=searchResults
Espero que te sea de utilidad!
Answer:
Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.
Explanation:
La Energía Potencial Elástica almacenada por el resorte ([tex]U_{e}[/tex]), en joules, se calcula a partir de la Ley de Hooke, la definición de Trabajo y el Teorema del Trabajo y la Energía, cuya expresión se presenta abajo:
[tex]U_{e} = \frac{1}{2}\cdot k\cdot (x_{f}^{2}-x_{o}^{2})[/tex] (1)
Donde:
[tex]k[/tex] - Constante elástica del resorte, en newtons por metro.
[tex]x_{o}[/tex] - Posición inicial del resorte, en metros.
[tex]x_{f}[/tex] - Posición final del resorte, en metros.
Nótese que el resorte sin deformar tiene una posición de cero, la tensión tiene un valor positivo y la compresión, negativo.
Asumiendo que en ambos casos el resorte se encuentra inicialmente sin deformar, se reduce (1) a una forma de función par, es decir, una función que cumple con la propiedad de que [tex]f(x) = f(-x)[/tex], se encuentra que al comprimirse o estirarse en la misma medida almacena la misma cantidad de energía.
La cantidad de energía a almacenar es:
[tex]U_{e} = \frac{1}{2}\cdot \left(1300\,\frac{N}{m} \right)\cdot (0,12\,m)^{2}[/tex]
[tex]U_{e} = 9,360\,J[/tex]
Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.