An infinite line charge of linear charge density +1.50μC/m lies on the z axis. Find the electric potential at distances from the line charge of (a) 2.00 m,(b)4.00 m, and (c) 12.0 m. Assume that we choose V=0 at a distance of 2.50 m from the line of charge. "SडM

Answers

Answer 1

The electric potential at distances of 2.00 m, 4.00 m, and 12.0 m from the line charge are approximately 1.35 * 10^6 V, 6.74 * 10^5 V, and 2.24 * 10^5 V, respectively, when referenced to a distance of 2.50 m from the line of charge where V = 0.To find the electric potential at different distances from the infinite line charge, we can use the formula for the electric potential due to a line charge:

V = kλ / r

where V is the electric potential, k is the electrostatic constant (8.99 * 10^9 N·m²/C²), λ is the linear charge density (in C/m), and r is the distance from the line charge.

Given that the linear charge density is +1.50 μC/m (1.50 * 10^-6 C/m), we can calculate the electric potential at the given distances:

a) At a distance of 2.00 m:

V₁ = (8.99 * 10^9 N·m²/C²) * (1.50 * 10^-6 C/m) / 2.00 m

b) At a distance of 4.00 m:

V₂ = (8.99 * 10^9 N·m²/C²) * (1.50 * 10^-6 C/m) / 4.00 m

c) At a distance of 12.0 m:

V₃ = (8.99 * 10^9 N·m²/C²) * (1.50 * 10^-6 C/m) / 12.0 m

Now, to calculate the potential with respect to a reference point at a distance of 2.50 m from the line of charge, we subtract the potential at that reference point from each of the calculated potentials:

V₁' = V₁ - V(2.50 m)

V₂' = V₂ - V(2.50 m)

V₃' = V₃ - V(2.50 m)

Given that V(2.50 m) = 0 (as chosen in the problem), the equations simplify to:

V₁' = V₁

V₂' = V₂

V₃' = V₃

Now, we can substitute the known values and calculate the electric potential at each distance:

a) At a distance of 2.00 m:

V₁' = (8.99 * 10^9 N·m²/C²) * (1.50 * 10^-6 C/m) / 2.00 m

b) At a distance of 4.00 m:

V₂' = (8.99 * 10^9 N·m²/C²) * (1.50 * 10^-6 C/m) / 4.00 m

c) At a distance of 12.0 m:

V₃' = (8.99 * 10^9 N·m²/C²) * (1.50 * 10^-6 C/m) / 12.0 m

Calculating the results:

a) V₁' ≈ 1.35 * 10^6 V

b) V₂' ≈ 6.74 * 10^5 V

c) V₃' ≈ 2.24 * 10^5 V

Therefore, the electric potential at distances of 2.00 m, 4.00 m, and 12.0 m from the line charge are approximately 1.35 * 10^6 V, 6.74 * 10^5 V, and 2.24 * 10^5 V, respectively, when referenced to a distance of 2.50 m from the line of charge where V = 0.

To learn more about electric potential click here : brainly.com/question/26978411

#SPJ11


Related Questions

What is the net electric field at x=−4.0 cm ? Express your answer using two significant figures. Two point charges lie on the x axis. A charge of 6.0μC is at the origin, and a charge of −9.1μC is at x=10.0 cm You may want to review (Pages 671−675 ) Part B What is the net electric field at x=+4.0 cm ? Express your answer using two significant figures.

Answers

To determine the net electric field at a specific point on the x-axis, we need to consider the individual electric fields created by each charge and their respective directions.

Given:

Charge at the origin (x = 0):

q1 = 6.0 μC

Charge at x = 10.0 cm:

q2 = -9.1 μC

Point of interest: x = ±4.0 cm

The electric field at a point due to a point charge can be calculated using the equation:

[tex]E = k * (q / r^2)[/tex]

Where:

E is the electric field

k is the electrostatic constant (9 x 10^9 N m^2/C^2)

q is the charge

r is the distance between the charge and the point

Let's calculate the electric field at x = -4.0 cm:

Distance from q1 to the point (-4.0 cm):

[tex]r1 = 4.0 cm \\= 0.04 m[/tex]

Electric field due to q1:

[tex]E1 = k * (q1 / r1^2)[/tex]

Distance from q2 to the point (-4.0 cm):

[tex]r2 = 10.0 cm + 4.0 cm \\= 14.0 cm \\= 0.14 m[/tex]

Electric field due to q2:

[tex]E2 = k * (q2 / r2^2)[/tex]

The net electric field at x = -4.0 cm is the vector sum of E1 and E2. Since q2 is negative, the electric field due to q2 will have the opposite direction compared to E1.

Net electric field at x = -4.0 cm:

[tex]E_{net} = E1 - E2[/tex]

Now let's calculate the electric field at x = +4.0 cm:

Distance from q1 to the point (+4.0 cm):

r1 = 0.04 m

Electric field due to q1:

[tex]E1 = k * (q1 / r1^2)[/tex]

Distance from q2 to the point (+4.0 cm):

[tex]r2 = 10.0 cm - 4.0 cm \\= 6.0 cm \\= 0.06 m[/tex]

Electric field due to q2:

[tex]E2 = k * (q2 / r2^2)[/tex]

The net electric field at x = +4.0 cm is the vector sum of E1 and E2.

Net electric field at x = +4.0 cm:

[tex]E_{net} = E1 + E2[/tex]

Please note that the value of k is 9 x 10^9 N m^2/C^2.

Now let's calculate the net electric fields at x = -4.0 cm and

x = +4.0 cm using the given charges.

To know more about electric field visit

https://brainly.com/question/11482745

#SPJ11

A moure is eating cheese 309 meters from a sleeping cat. When the cat wakns up, the mouse immediately starts running away from the cat with a constant velocity of 1.29 mis. The cat immediately starts chasing the mouse with a constant velocity of 4.23 m/s. Assume the cat and the mouse start running intantancousy wo there are no accelerations to worry about. Qin vour answers to 2 dncemal places. Wow many wecenis after they begin renning does the cat eateh the mouse? Hew tar does the cat have te run ta catch the mouse? meters A moute is eating cheeve 3.89 meters from a sleeping cat. When the cat wakes up, the mouse immediately starts running away from the cat with a constant velocity of 1.29 m/s. The cat immediately starts chasing the mouse with a constant velocity of 4.23 m/s. Assume the cat and the mouse start running. instantaneously so there are no accelerations to warry about. Give your answers to 2 decimal places. How many seconds after they begin funning does the cat catch the mouse? seconds How far does the cat have to run to catch the mouse? metery

Answers

A moure is eating cheese 309 meters from a sleeping cat. When the cat wakns up, the mouse immediately starts running away from the cat with a constant velocity of 1.29 mis. The cat immediately starts chasing the mouse with a constant velocity of 4.23 m/s.The cat catches the mouse approximately 0.92 seconds after they start running. The cat has to run approximately 1.19 meters to catch the mouse.

To solve this problem, we can use the formula:

Time = Distance / Velocity

Let's calculate the time it takes for the cat to catch the mouse:

   Time for the mouse to start running away from the cat:

   Distance = 309 meters

   Velocity = 1.29 m/s

Time = Distance / Velocity

Time = 309 meters / 1.29 m/s

Time ≈ 239.53 seconds

   Time for the cat to catch the mouse:

   Velocity (cat) = 4.23 m/s

Time = Distance / Velocity

Time = 3.89 meters / 4.23 m/s

Time ≈ 0.92 seconds

Therefore, the cat catches the mouse approximately 0.92 seconds after they start running.

Now, let's calculate the distance the cat has to run to catch the mouse:

Distance = Velocity (mouse) × Time

Distance = 1.29 m/s × 0.92 seconds

Distance ≈ 1.19 meters

Therefore, the cat has to run approximately 1.19 meters to catch the mouse.

To learn more about  velocity visit: https://brainly.com/question/80295

#SPJ11

If you charge your céll phone battery with 100 units of energy and you get 120 units of energ) out of the battery, which law of thermodynamics are you violating? 1. A) \( 0^{\text {th }} \) Law

Answers

The situation you described, where you charge your cellphone battery with 100 units of energy and get 120 units of energy out of the battery, violates the First Law of Thermodynamics, also known as the Law of Conservation of Energy.

The First Law of Thermodynamics states that energy cannot be created or destroyed within an isolated system. It can only be converted from one form to another or transferred between different parts of the system. In simpler terms, the total amount of energy in a closed system remains constant.

In the case of your cellphone battery, charging it with 100 units of energy and extracting 120 units of energy would imply that the battery is generating energy on its own, which contradicts the principle of conservation of energy. Such a violation would imply the creation of energy from nothing, which is not possible according to our current understanding of physics.

Therefore, the situation you described goes against the First Law of Thermodynamics. In reality, there are losses associated with energy conversions and transfers, such as heat dissipation and inefficiencies in the charging and discharging processes, which would prevent you from obtaining more energy from the battery than you put into it.

To know more about Thermodynamics, visit:

https://brainly.com/question/33422249

#SPJ11

An electron beam is diffracted from the crystal plane (220) of cubic sample with lattice constant 5.43 A at diffraction angle 3.66^ ∘. What is the energy of the incident electrons.

Answers

The energy of the incident electrons is 1.213 keV.

Diffraction angle = θ = 3.66°

Lattice constant = a = 5.43 A= 5.43 × 10⁻¹⁰ m

Crystal plane = (220)

For a cubic crystal, the atomic spacing between (hkl) planes is given as

a/hkl = [tex]\sqrt{2}[/tex] / hkl ---(1)

The energy of an electron beam is given as

E = (hc) / λ ---(2)

where

h is Planck's constant, c is the velocity of light, and λ is the wavelength of the electron beam.

The Bragg's law for diffraction is given as

kλ = 2d sinθ ---(3)

where k is a positive integer

Now we need to find the energy of the incident electrons.

From equation (1), the atomic spacing between (220) planes is

a/220 =  [tex]\sqrt{2}[/tex] / 220 = 5.43 × 10⁻¹⁰ / [tex]\sqrt{2}[/tex]

Using equation (3), the wavelength of the incident electron beam is given as

kλ = 2d sinθ = 2 x 5.43 × 10⁻¹⁰ /[tex]\sqrt{2}[/tex] × sin 3.66°

= 1.631 × 10⁻¹⁰ m

Now using equation (2), the energy of the incident electrons is

E = (hc) / λ = (6.626 × 10⁻³⁴ Js) × (3 × 10⁸ m/s) / 1.631 × 10⁻¹⁰ m

= 1213 eV

= 1.213 keV

To know more about energy, visit:

https://brainly.com/question/1932868

#SPJ11

Two point charges, Q1 and Q2, are located at (1, 2, 0) and (2, 0, 0), respectively. Find the relation between Q1 and Q2 such that the force on a test charge at the point P(-1, 1, 0) will have

a. No x-component

b. No y-component

Answers

the relation between Q1 and Q2 such that the force on the test charge at P will have no x-component is Q1 * sqrt(10) = Q2 * sqrt(13).

To find the relation between Q1 and Q2 such that the force on a test charge at the point P(-1, 1, 0) will have no x-component, we need to set up an equation using Coulomb's law. Coulomb's law states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.

Let's assume Q1 is the charge at (1, 2, 0) and Q2 is the charge at (2, 0, 0). The equation for the force on the test charge at P(-1, 1, 0) is:

F = k * (Q1 * Q2) / r^2

where k is the Coulomb's constant and r is the distance between the test charge and the point charge.

Now, since we want the force to have no x-component, we can set the x-components of the forces from Q1 and Q2 equal to each other. Let's denote the distance between Q1 and P as r1 and the distance between Q2 and P as r2.

The x-component of the force from Q1 is given by:

F1x = k * (Q1 * Q) / r1^2

The x-component of the force from Q2 is given by:

F2x = k * (Q2 * Q) / r2^2

Since we want F1x = F2x, we can equate the two equations:

k * (Q1 * Q) / r1^2 = k * (Q2 * Q) / r2^2

Canceling out the constants and rearranging the equation, we get:

(Q1 * Q) / r1^2 = (Q2 * Q) / r2^2

Now, substituting the values for r1, r2, and the coordinates of P, we have:

(Q1 * Q) / (sqrt(2^2 + 3^2)) = (Q2 * Q) / (sqrt(3^2 + 1^2))

Simplifying further:

(Q1 * Q) / sqrt(13) = (Q2 * Q) / sqrt(10)

Cross multiplying:

(Q1 * Q * sqrt(10)) = (Q2 * Q * sqrt(13))

Dividing both sides by Q * Q:

Q1 * sqrt(10) = Q2 * sqrt(13)

To know more about force visit:

https://brainly.com/question/30507236

#SPJ11

A circular core of high relative permeability material is shown in figure Q2c. Insulated wire is wrapped around the core to make an inductor of 100mH. An alternating current source is connected in series with a resistor to the magnetic circuit. The supplied current is sinusoidal with a RMS (Root Mean Square) current of 10 mA at a frequency of 12kHz. i) Determine the RMS voltage across the inductor. The AC current source is replaced by a DC current source. The output is initially isolated from the magnetic circuit by an open switch. The DC supply is set to 10 mA. The switch is then closed and the current is allowed to flow.

Answers

RMS voltage across the inductor is determined using the formula for RMS voltage across an inductor, Vrms = 2πfLI where L is the inductance of the inductor and I is the RMS current supplied to the inductor. The frequency f is given to be 12 kHz, and the inductance L is given to be 100 mH.Explanation :The inductor has an inductance L = 100 mHThe frequency f is given to be 12 kHz

The RMS current supplied to the inductor is I = 10 mA.The formula for RMS voltage across an inductor is given as:Vrms = 2πfLIOn substituting the values of L, f and I in the formula, we get,Vrms = 2π(12 kHz)(100 mH)(10 mA) = 7.54 Vii) The magnetic circuit has a circular core of high relative permeability material and an insulated wire wrapped around the core to form an inductor. A DC current source is connected to the circuit. Initially, the output of the DC current source is isolated from the magnetic circuit by an open switch.

Then, the DC supply is set to 10 mA and the switch is closed. As the switch is closed, the current starts to flow in the circuit through the inductor. However, since the core is made up of a high permeability material, the inductance of the circuit increases. This leads to a delay in the buildup of current in the circuit. Due to the delay, the current in the circuit does not reach the steady-state immediately after the switch is closed.

TO know more about that voltage visit:

https://brainly.com/question/32002804

#SPJ11

Other Questions
at the beggining of the scene why does bevolio think there will be a fight Owning the physical copy of the work is the same as owning the copyright for the work. (true or false) Power system faults can be caused by many different incidents/events/things. List seven possibilities. The Earth is approximately a sphere of radius 6.37 x 10% m. Calculate the distance from the pole to the equator, measured along the surface of the Earth. Calculate the distance from the pole to the equator, measured along a straight line passing through the Earth. Write a Python program that processes a file called fifa.txt whose structure is described previously, to produce output with the following structure (however, your program is allowed to print these lines in any order). For each football club that its name ends with FC, give the sum total of the weight from footbal players whose height is lower than 180 cm. If all the football players in the club are at least 180 cm tall, show 0 as the number. You may assume that FC in the club name will always be uppercase. So on the file from previous page, the output should be: Sydney FC 0 Toronto FC 61 Atlanta United FC 132 This is because the only club names that ends with FC are Sydney FC, Toronto FC and Atlanta United FC. full_name, club, birth_date, height_cm, weight_kg, nationality Bruno Fornaroli, Melbourne City, 9/7/1987,175,68,Uruguay Diego Castro Gimnez, Perth Glory, 7/2/1982,174,71, Spain Alvaro Cejudo Carmona, Western Sydney Wanderers, 1/29/1984,180,78, Spain Milo Ninkovi, Sydney FC, 12/25/1984,180,76, Serbia Massimo Maccarone, Brisbane Roar, 9/6/1979, 180,73, Italy Besart Berisha, Melbourne Victory, 7/29/1985,183,80, Kosovo Mark Milligan, Melbourne Victory,8/4/1985,178,78, Australia James Troisi, Melbourne Victory, 7/3/1988,176,75, Australia Deivson Rogrio Da Silva, Sydney FC, 1/9/1985,186,85, Brazil Ersan Glm, Adelaide United,5/17/1987,185,85, Turkey Sebastian Giovinco, Toronto FC, 1/26/1987,163,61, Italy David Villa Snchez, New York City Football Club, 12/3/1981, 175, 69, Spain Bastian Schweinsteiger, Chicago Fire Soccer Club, 8/1/1984,183,79, Germany Ignacio Piatti, Montreal Impact, 2/4/1985, 180,76, Argentina Jonathan dos Santos, LA Galaxy, 4/26/1990, 172,74, Mexico Ricardo Izecson dos Santos Leite, Orlando City Soccer Club, 4/22/1982, 186, 83, Brazil Miguel Almirn, Atlanta United FC, 2/10/1994, 175,63, Paraguay Diego Valeri, Portland Timbers, 5/1/1986,178,75, Argentina Pedro Miguel Martins Santos, Columbus Crew SC, 4/22/1988,173,65, Portugal Josef Martnez, Atlanta United FC, 5/19/1993,170,69, Venezuela 1.Sketch the graph of the polynomial function given by: y=x(x-2)x+3)(x-5)(a) LIST all the zeroes as ordered pairs and, (b) DESCRIBE the end behaviors of the function.2. Sketch the graph of the rational function given by: y 3-2x x+1 LABEL the vertical asymptote(s) and any the horizontal asymptote with their equations, and the x-and y- intercept(s). SHOW HOW YOU ARRIVE AT YOUR VALUES!! QUESTION TWO [20]2.1 Given that business environments may sometimes be characterised by turbulent changes,it essential that organisational preparedness forms a priority. With reference to thisstatement, discuss the four (4) risk response strategies which may be adopted byorganisations. (12) Purpose: This syndicate assignment assesses students ability to formulate a fully integrated operations and technology solution to a realistic and complex management problem in the (South) African context, based on the key TOM principles and techniques covered in the course. The assignment also develops and tests students team-working, oral and written communications, and critical engagement skills, in an operations and technology management context. The focal organisation and scenario are outlined below; additional details will be discussed in class.Requirement: Syndicates must prepare a short report (Arial, 12-point, 1.5 spacing; maximum 10 pages including references and exhibits, roughly 1 500 to 2 000 words). Syndicates must also deliver a 10- to 15-minute slide presentation (depending on the number of syndicates) on the reports highlights, which will then be followed by a 3- to 5-minute Q&A session with the lecturer and the rest of the class. All members must participate at some point in either the delivery or the Q&A phase of the presentation, or both. An indication of the relative contribution of each member must be provided in the report and presentation. Syndicates must submit soft copies of their presentations.The report must:Include (at the beginning) an executive summary that condenses all the key elements of the assignment onto one (1) single page. The executive summary does not count towards the 10-page allocation.Define the management problem in the context of the focal organisations current situation, challenges, opportunities, and macroenvironment, including stakeholders, regulation, technology and economic trends, sustainability, and other relevant factors. Syndicates should not simply produce a laundry list, but rather be selective and analytical in presenting and evaluating the most important factors.Propose a fully integrated operations and technology solution based on an analysis of the identified management problem, incorporating key TOM principles, techniques and trends. The strategic intent of the solution should also be made clear.Outline an implementation project plan, including goals, assumptions, timeframes, cost implications, risk mitigation, and measures to deal with the organisations relevant legacy issues.Substantiate its analysis, proposed solution and findings with strong supporting evidence from reliable sources, including citations from the technical literature, credible government and industry reports, secondary data and primary research (if and where possible and applicable).Offer conclusions that summarise the major findings, distil key implications for the organisation in terms of next steps or reorientation of existing strategy and operations, and make a realistic assessment of the chances of success or failure.The syndicate should approach the assignment in the role of a special task team set up by the organisations board and top executives to recommend a new TOM-related solution and implementation plan to respond to a specific issue facing the organisation in the post-Covid-19 era.The team is required to outline at least three possible high-level (i.e. broad, general) responses to the identified issue/problem/challenge. These should be genuine alternatives (i.e. mutually exclusive options) and should utilise the TOM frameworks and tools covered in the course. Using a defined set of solution criteria, select one of your options and explain why it is superior to the other alternatives as well as to the status quo. Define a set of specific actions for the organisation to implement this option, taking into account all pertinent issues. Identify clearly all relevant and applicable TOM principles and techniques. Your set of actions (implementation plan) should address the quantitative and qualitative issues you identified in your earlier analyses. To the extent possible, evaluate the financial requirements and implications of your recommendations, as well as other organisational impacts (positive and negative), and put forward suitable risk mitigation measures.Focal organisation and scenario: The focal organisation is African Leadership University (ALU) African Leadership University (ALU) (Links to an external site.), an innovative pan-African higher education institution that was founded in 2015. Five years later, the entire globe plunged into the Covid-19 crisis and ALU, along with every other organisation in the world, was forced to make rapid, short-term adjustments in response to the new operating environment. The special task team (your syndicate) has been commissioned to advise ALUs Board of Trustees and Senior Leadership Team on how to reposition the organisation for long-term success in the post-pandemic era, especially from a TOM perspective. Monopolist is producing good Y. The market demand for good Y is described by function y = 720 6Py , where y denotes the quantity of good Y demanded and Py denotes the price of good Y in euros. The total costs of this monopolist are described by the cost function C(y)=20y+5000, where y denotes the quantity of good Y produced. 1. Find the profit maximizing quantity of output Y* for this monopolist (assuming that price discrimination is not possible). 200-250 wo.rds. Thank you Describe the importance of finance Goal planning in Personal Finance. examples of comprehension of the topic Suppose a point charge creates a 12500 N/C electric field at a distance of 0.45 m. A 50% Part (a) What is the magnitude of the point charge in coulombs? Q= Hints: deduction per hint. Hints remaining: Feedback: 0% deduction per feedback. What is the process flow diagram for services called? Product/process layout Service interaction diagram Process diagram Flow chart Service blueprint which type of classification deals with why climate types occur where they do? SP 19 Serial Problem Business Solutions (Static) LO P2 Santana Rey expects sales of Business Solutions' line of computer workstation furniture to equal 300 workstations (at a sales price of $3,000 each) for 2021 . The workstations' manufacturing costs include the following. Selling and administrative expenses for these workstations follow. Santana is considering how many workstations to produce in 2021 . She is confident that she will be able to sell any workstations in her 2021 ending inventory duting 2022 . However, Santana does not want to overproduce as she does not have sufficient storage space for many more workstations. Required: 1. Complete the following income statements using absorption costing. 2. Complete the following income statements using variable costing. 3. Reviewing results from parts 1 and 2, which costing method, absorption or variable, yields the higher income when 320 workstations are produced and 300 are sold? Complete this question by entering your answers in the tabs below. Complete the following income statements using absorption costing. Complete this question by entering your answers in the tabs below. Complete the following income statements using absorption costing. Complete this question by entering your answers in the tabs below. Complete the following income statements using variable costing. #2. In a certain cyclotron, a proton moves perpendicular to a magnetic field with a radius of 0.25 m at a frequency of 3.210 6Hz. (a) Find the magnitude of the magnetic field. A small point charge with q=20mC and mass 1 gram is being held in place 0.5 cm from the negatively charged plate of a capacitor as shown in the figure below - which also shows the total capacitor gap distance of 0.6 cm and voltage across the plates of 20Volts. The charged particle is released. What will its velocity be when it is 0.25 cm from the negatively charged plate of the capacitor? A \( 195 \mathrm{~g} \) block in pressed against a spring of force constant \( 1.50 \mathrm{kN} / \mathrm{m} \) until the block compretistes the spring \( 10.0 \mathrm{~cm} \). The spring rests at the Discuss the importance and characteristics of Northwest Coast art.Do you think non-Native artists have the moral right to make use of Native motifs and visual art styles as Northwest Coast Indigenous art? You are running in the woods, and you notice a bear running towards you 20m away from you. You know you are close to your car, which is in the opposite direction. Your speed is 4m/s and you know bears can run as fast as 6m/s. If you are 50m away from your car, will you make it safely? Assume you are both running at a constant speed. a. What is the maximum possible distance you could be from the car to make it safely? In the Introduction to Impossibility module, 4/5 of students pass the exam. Of those who pass the exam 9/10 attend lectures, and of those who fail only 1/2 attend lectures. What is the probability that a student who doesn't attend lectures passes the exam? Select one: a. None of the other choices b. 1/10 c. 4/9 d. 2/25 e. 1/2