An Australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down of 10.4m/s in 4.70s.(a) What is the magnitude and direction of the bird's acc? (b) Assuming that the acceleration remains the same, what is the bird's velocity after an additional 1.70s has elapsed?

Answers

Answer 1

Australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down of 10.4 m/s in 4.70 s. We need to find the magnitude and direction of the bird's acceleration. We also need to find the bird's velocity after an additional 1.70 s has elapsed.

Given data;Initial velocity, u = 13 m/sFinal velocity, v = 10.4 m/sTime, t = 4.70 s(a) Magnitude and direction of the bird's accelerationWe know that the formula for acceleration is;acceleration = (v - u) / tOn substituting the values, we get;acceleration = (10.4 - 13) / 4.70= - 0.553 m/s²The direction of the acceleration is negative because the bird is slowing down and running towards the north direction.(b) Velocity of the bird after 1.70 s has elapsedWe need to calculate the velocity of the bird after 1.70 s from the given data.Initial velocity, u = 13 m/sAcceleration, a = -0.553 m/s²Time, t = 1.70 sLet's use the formula of velocity;v = u + at

Substituting the given values, we get;v = 13 - 0.553 × 1.70= 12.06 m/sTherefore, the velocity of the bird after an additional 1.70 s has elapsed is 12.06 m/s.

learn more about acceleration

https://brainly.com/question/460763

#SPJ11


Related Questions

An object undergoes constant acceleration from a velocity of +2.5 m/s to -4.5 m/s while undergoing a displacement of -3 m. What is the object's acceleration in m/s2?

Answers

The object's acceleration is approximately -2.33 m/s^2. To find the object's acceleration, we can use the following kinematic equation:

v_f^2 = v_i^2 + 2a * d

where:

- v_f is the final velocity

- v_i is the initial velocity

- a is the acceleration

- d is the displacement

Given:

v_i = +2.5 m/s

v_f = -4.5 m/s

d = -3 m

We can substitute these values into the equation and solve for a:

(-4.5 m/s)^2 = (+2.5 m/s)^2 + 2a * (-3 m)

Simplifying the equation:

20.25 m/s^2 = 6.25 m/s^2 - 6a

Rearranging the equation:

6a = 6.25 m/s^2 - 20.25 m/s^2

6a = -14 m/s^2

a = -14 m/s^2 / 6

Simplifying:

a ≈ -2.33 m/s^2

Therefore, the object's acceleration is approximately -2.33 m/s^2.

To know more about acceleration

brainly.com/question/30660316

#SPJ11

A golf ball is dropped from rest from a height of 8.50 m. It hits the pavement, then bounces back up, rising just 6.40 m before falling back down again. A boy then catches the ball when it is 1.50 m above the pavement. Ignoring air resistance, calculate the total amount of time that the ball is in the air, from drop to catch.

Answers

The total amount of time that the ball is in the air, from drop to catch is 3.66 s

Ignoring air resistance, the total amount of time that the ball is in the air, from drop to catch can be calculated as follows:

First, we can calculate the time taken by the golf ball to reach the pavement by using the formula;

s = (1/2) gt²

where s is the distance,

g is acceleration due to gravity,

and t is time taken.

In this case, s = 8.5 m and g = 9.8 m/s².

Therefore, t = √(2s/g)= √(2×8.5/9.8) = √1.734 = 1.32 s.

Second, we can calculate the time taken by the golf ball to rise up to a height of 6.40 m.

Since the motion is symmetrical we can use the same time t as obtained above.

Using the same formula, s = (1/2) gt² where s = 6.40 m and g = 9.8 m/s².

Therefore, t = √(2s/g) =√(2×6.4/9.8) = √1.04 = 1.02 s

The total amount of time that the ball is in the air can be calculated as;

total time = t + t + t = 1.32 + 1.02 + 1.32 = 3.66 s.

Therefore, the total amount of time that the ball is in the air, from drop to catch is 3.66 s.

For more such questions on time visit:

https://brainly.com/question/4931057

#SPJ8

A car traveling at 33 m/s runs out of gas while traveling up a 9.0 slope. How far will it coast before starting to roll back down? Express your answer in meters

Answers

A car traveling at 33 m/s runs out of gas while traveling up a 9.0 slope. It will travel the distance of 32.676 m uphill before it starts to roll back down.

To determine how far the car will coast before starting to roll back down the slope, we need to calculate the distance it travels uphill until its velocity becomes zero. This distance is the maximum distance the car can travel before the force of gravity begins to overcome the car's momentum.

First, we need to determine the vertical component of the car's initial velocity. Given that the car is traveling up a 9.0° slope, we can calculate this component using trigonometry:

Vertical component of initial velocity = 33 m/s * sin(9.0°)

Next, we can calculate the time it takes for the car to come to a stop. When the car's velocity becomes zero, the force of gravity will exactly balance the component of the car's weight parallel to the slope. This can be calculated using the equation:

Vertical component of initial velocity = (acceleration due to gravity) * time

Rearranging the equation to solve for time:

Substituting the values:

time = Vertical component of initial velocity / (acceleration due to gravity)

time = (33 m/s * sin(9.0°)) / (9.8 m/s²)

time ≈ 5.662 m/s / 9.8 m/s²

time ≈ 0.578 s

Now, we can calculate the distance the car travels during this time. Since the car is on a slope, the distance is equal to the horizontal component of the initial velocity multiplied by the time:

Distance traveled uphill = 33 m/s * cos(9.0°) * time

Plugging in the values:

Distance traveled uphill = 33 m/s * cos(9.0°) * [(33 m/s * sin(9.0°)) / (9.8 m/s²)]

Distance traveled uphill = 33 m/s * cos(9.0°) * time

Distance traveled uphill ≈ 33 m/s * cos(9.0°) * 0.578 s

Distance traveled uphill ≈ 32.676 m

Learn more about vertical component here:

https://brainly.com/question/31684355

#SPJ11

You are standing on a scale in an elevator that is moving up with a constant velocity. If your actual weight is w, the scale reads: (Hint: To answer this correctly, make a free-body diagram. The scale reading is the normal force and your answer depends on the acceleration). more than w Can't be determined without knowing v. less than wh:

Answers

When you are standing on a scale in an elevator that is moving up with a constant velocity, the scale reads less than w.For an object in a non-accelerating lift (constant velocity), the normal force acting on the object is less than its weight.

When the elevator moves up with constant velocity, the normal force acting on you is less than your actual weight because the elevator is exerting a force less than your weight to keep you in a state of motion (resting on the scale). This is because the direction of your acceleration is the opposite direction of the force applied by the scale on you.In conclusion, the scale reads less than your actual weight because the normal force acting on you is less than your actual weight.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

How do the following vary with time for a simple harmonic oscillator: total mechanical energy, kinetic energy, potential energy?

Answers

A simple harmonic oscillator is a system that oscillates or vibrates at a single frequency. As the system moves back and forth, the total mechanical energy, kinetic energy, and potential energy of the system vary with time. When the oscillator is at its maximum displacement from equilibrium, its total mechanical energy is entirely potential energy.

A simple harmonic oscillator is a system that oscillates or vibrates at a single frequency. As the system moves back and forth, the total mechanical energy, kinetic energy, and potential energy of the system vary with time. When the oscillator is at its maximum displacement from equilibrium, its total mechanical energy is entirely potential energy. As the oscillator passes through the equilibrium position, it has the most kinetic energy and the least potential energy. As the oscillator moves to its opposite maximum displacement, its total mechanical energy is entirely kinetic energy.

The total mechanical energy of a simple harmonic oscillator, which is proportional to the square of the amplitude, remains constant and is independent of time. However, the kinetic and potential energies fluctuate with time, as shown in the figure below.  

Figure: A graph showing the variation of kinetic energy (K), potential energy (U), and total mechanical energy (E) with time for a simple harmonic oscillator. A simple harmonic oscillator's total mechanical energy is the sum of its kinetic and potential energies, as follows: E = K + U

Because the total mechanical energy is constant, the energy is transferred from kinetic to potential energy and vice versa throughout the cycle. As the oscillator approaches its maximum displacement, potential energy increases while kinetic energy decreases. When the oscillator approaches the equilibrium position, the potential energy is converted to kinetic energy, and the process is reversed on the opposite side.

Thus, the kinetic and potential energies are in opposite phases, and the sum of the two remains constant. Therefore, the total mechanical energy of a simple harmonic oscillator remains constant while the kinetic and potential energies fluctuate with time.

To know more about harmonic oscillator visit:

https://brainly.com/question/13152216

#SPJ11

Light from a green laser (550.nm) illuminates a grid of thin fibers. A double slit diffraction pattern is projected on a screen 2.0 meters from the fibers. The third bright fringe is 33.4 mm from the central spot. What is the distance between fibers?

Answers

The distance between fibers illuminated by a green laser of 550 nm, given that the third bright fringe is 33.4 mm from the central spot and that a double-slit diffraction pattern is projected on a screen 2.0 meters from the fibers is 0.0232 mm (to 3 sig figs).

Given data,λ = 550 nm = 550 × 10⁻⁹ m = 5.50 × 10⁻⁷ m (1 nm = 10⁻⁹ m).The third bright fringe = mλD/d; where m = 3 and D = 2.0 m.third bright fringe = 3 × 5.50 × 10⁻⁷ × 2.0/d; or,33.4 × 10⁻³ = 1.10 × 10⁻⁶/d; ord = 1.10 × 10⁻⁶/33.4 × 10⁻³; ord = 0.0232 mm.Thus, the distance between fibers is 0.0232 mm (to 3 sig figs).

Learn more about the Fringe:

https://brainly.com/question/31083681

#SPJ11

Tom was frightened by Jerry dropping a pot and he jumped 6ft in the air with a speed of 4 fus. Tom weighs 12lb. Piease give answers for the following. Pay attantian fo the units that it asking for the answer to be in and do not put the units

Answers

Tom's kinetic energy is 96 J, his potential energy is 2304 J, his total mechanical energy is 2400 J, his acceleration is 1.33 ft/s^2, and his force is 16 N.

1. What is Tom's kinetic energy in Joules?

KE = 1/2mv^2 = 1/2 * 12 * 4^2

KE = 96 J

2. What is Tom's potential energy at the top of his jump in Joules?

PE = mgh = 12 * 32 * 6

PE = 2304 J

3. What is Tom's total mechanical energy in Joules?

TE = KE + PE = 96 + 2304

TE = 2400 J

4. What is Tom's acceleration during his jump in feet per second squared?

a = v^2 / 2h = 4^2 / 2 * 6

a = 1.33 ft/s^2

5. What is Tom's force in pounds?

F = ma = 12 * 1.33

F = 16 N

To learn more about mechanical energy: https://brainly.com/question/29408366

#SPJ11

Suppose a 52-turn coil lies in the plane of the page in a uniform magnetic field that is directed out of the page. The coil originally has an area of 0.275 m2. It is stretched to have no area in 0.100 s. What is the magnitude (in V ) and direction (as seen from above) of the average induced emf if the uniform magnetic field has a strength of 1.60 T?

Answers

Faraday's law of electromagnetic induction is used to compute induced EMF, abbreviated as e. It expresses the relationship between the EMF generated and the magnetic flux's rate of change, abbreviated as φ.

The induced EMF in the coil with 52 turns that lies in the plane of the page in a uniform magnetic field of 1.60 T that is directed out of the page is calculated as follows:

Given values are as follows:52-turn coilInitial area, A1 = 0.275 m²Final area, A2 = 0m² (as it is stretched to have no area in 0.100s)Time, t = 0.100 s

Strength of the uniform magnetic field, B = 1.60 T

We need to calculate the magnitude (in V) and direction (as seen from above) of the average induced EMF, e.We know that the flux is defined as φ = B.A.

Therefore, we can write:[tex]B * A1 = B * A2 + [(ΔB / Δt) * A2][/tex]

By substituting the given values in the above formula,

we get: (1.60 T)(0.275 m²)

= [tex](1.60 T)(0 m²) + [(ΔB / Δt) * 0 m²]ΔB / Δt[/tex]

= [tex][(1.60 T)(0.275 m²)] / (0 m²)(0.100 s)ΔB / Δt[/tex]

= [tex]4.40 T/s[/tex]

Now, by using Faraday's law of electromagnetic induction, we can calculate the induced EMF.

[tex]e = -N (Δφ / Δt).[/tex]

To know more about Faraday's law visit:

https://brainly.com/question/28277482

#SPJ11

A particle moves in a straight line with an initial velocity of 30 m/s and a constant acceleration of 30 m/s
2
. The provided answer is not correct and no specific feedback is available. Please view available hints and review the relevant material. Close and stay on this question If at t=0,x=0 and v=0, what is the particle's position, in meters, at t=5 seconds?

Answers

Answer:

At t = 5 seconds, the particle's position is 525 meters.

Explanation:

To find the particle's position at t = 5 seconds, we can use the equations of motion.

Given:

Initial velocity (v₀) = 30 m/s

Acceleration (a) = 30 m/s²

Time (t) = 5 seconds

We need to find the position (x) at t = 5 seconds.

Using the equation of motion:

x = v₀t + (1/2)at²

Substituting the given values:

x = (30 m/s)(5 s) + (1/2)(30 m/s²)(5 s)²

Simplifying the equation:

x = 150 m + (1/2)(30 m/s²)(25 s²)

x = 150 m + 375 m

x = 525 m

Therefore, at t = 5 seconds, the particle's position is 525 meters.

Learn more about equations of motion: https://brainly.com/question/25951773

#SPJ11

Vector
A
has x and y components of −8.70 cm and 15.0 cm, respectively. Vector
B
has x and y components of 13.2 cm and −6.60 cm, respectively. If
A

B
+3
C
=0, what are the components of
C
?

Answers

The components of vector C are Cx = 7.3 cm and Cy = -7.2 cm.

To find the components of vector C, we can rearrange the given equation:

A - B + 3C = 0

Let's substitute the components of vectors A and B:

(Ax, Ay) - (Bx, By) + 3(Cx, Cy) = (0, 0)

Given:

Ax = -8.70 cm

Ay = 15.0 cm

Bx = 13.2 cm

By = -6.60 cm

Substituting these values into the equation, we have:

(-8.70 cm, 15.0 cm) - (13.2 cm, -6.60 cm) + 3(Cx, Cy) = (0, 0)

To simplify the equation, we can subtract vector B from vector A:

(-8.70 cm - 13.2 cm, 15.0 cm - (-6.60 cm)) + 3(Cx, Cy) = (0, 0)

Simplifying further, we have:

(-21.9 cm, 21.6 cm) + 3(Cx, Cy) = (0, 0)

Since the sum of two vectors is equal to zero, their components must be equal:

-21.9 cm + 3Cx = 0 (equation 1)

21.6 cm + 3Cy = 0 (equation 2)

Now we can solve these two equations simultaneously to find the components of vector C.

From equation 1:

3Cx = 21.9 cm

Cx = 7.3 cm

From equation 2:

3Cy = -21.6 cm

Cy = -7.2 cm

To know more about vector

brainly.com/question/4179238

#SPJ11

The actual question is:

Vector A has x and y components of −8.70 cm and 15.0 cm, respectively. Vector B has x and y components of 13.2 cm and −6.60 cm, respectively.

If A−B+3C =0,

What are the components of C?

A "gravitron" from amusement park, with minimum safe speed on the surface of Earth 4.86 m/s was brought to the planet X and was set into operation. The safe speed which allowed people not to slide down on the planet X was measured as 7.64 m/s. Find acceleration of free fall on planet X.

Answers

The answer is the acceleration of free fall on planet X is 23.05 m/s². Minimum safe speed on the surface of Earth, v1 = 4.86 m/s; Safe speed on planet X, v2 = 7.64 m/s

Let g1 and g2 be the acceleration of free fall on Earth and planet X respectively. Then by formula for centrifugal force, F_c = mg1r and F_c = mg2r; where F_c is the centrifugal force, m is the mass of the body, r is the radius of circular path. Also we know that F_c = m (v^2)/r; where v is the velocity of the body on the circular path.

Centrifugal force on Earth: F_c1 = m (v1^2)/r … (i)

Centrifugal force on planet: XF_c2 = m (v2^2)/r … (ii)

Dividing equation (ii) by equation (i), we getF_c2 / F_c1 = (v2^2) / (v1^2)⇒F_c2 / F_c1 = g2 / g1⇒g2 / g1 = (v2^2) / (v1^2)⇒g2 = g1 (v2^2) / (v1^2)

Substituting g1 = 9.81 m/s² and the given values, we get

g2 = 9.81 × (7.64 / 4.86)²g2 = 23.05 m/s²

Hence, the acceleration of free fall on planet X is 23.05 m/s².

Learn more about centrifugal force here: https://brainly.com/question/954979

#SPJ11




locations, use the thin-lens equation to determine the focal length. Double check arithmetic. cm

Answers

Using the thin-lens equation, the focal length of the lens is determined to be 60 cm after calculations involving the object distance and image distance.

To determine the focal length of a lens using the thin-lens equation, you need the object distance (denoted as "u") and the image distance (denoted as "v"). The equation is as follows:

1/f = 1/v - 1/u

Where "f" represents the focal length of the lens. By rearranging the equation, you can solve for the focal length:

1/f = (v - u) / (uv)

Let's assume that the object distance (u) is 20 cm and the image distance (v) is 30 cm. Plugging these values into the equation:

1/f = (30 - 20) / (20 * 30)

1/f = 10 / 600

1/f = 1/60

To isolate the focal length (f), take the reciprocal of both sides:

f = 60 cm

Therefore, the focal length of the lens is 60 cm.

Learn more about lens equation here

https://brainly.com/question/33000256

#SPJ11

Air at 20°C and at a atmospheric pressure flows over a flat plate at a velocity of 3 m/s. If the plate is 30 cm long and at a temperature of 60°C, calculate: (a) the thickness of velocity and thermal boundary layers at 20 cm. (b) the average heat transfer coefficient. (c) total drag force on the plate, per unit width. Take the following properties of air: = P = 1.18 kg/m³, kinematic viscosity = 17 x 10-6 m²/s, k = 0.0272 W/m-K, Cp = 1.007 kJ/kg K

Answers

The thickness of velocity and thermal boundary layers is 0.0567 m and 0.0347 m respectively. The average heat transfer coefficient is 57.11 W/m² K. The total drag force on the plate is 0.05677 N/m.

According to the given problem, the properties of air are: ρ = 1.18 kg/m³, Kinematic viscosity (μ) = 17 × 10⁻⁶ m²/s, Thermal conductivity (k) = 0.0272 W/m-K, Specific heat (Cp) = 1.007 kJ/kg K, Reynolds number (Re)

Re = ρVxδvx / μ

= (1.18 × 3 × 0.2 × 0.017) / 0.000017 = 2222.4

Prandtl number (Pr)

Pr = Cp μ / k

= (1.007 × 0.000017) / 0.0272

= 0.00064

Nusselt number (Nu)

Nu = 0.332 × Re1/2 Pr1/3

= 0.332 × 2222.4 1/2 × 0.00064 1/3

= 73.324

Average heat transfer coefficient:

h = k Nu / δtx

= 0.0272 × 73.324 / 0.0347 = 57.11 W/m² K

The average skin friction coefficient is:

cf = 0.664 / Re1/2 = 0.664 / 2222.4 1/2 = 0.01575

Total drag force per unit width:

Fx = 0.5 ρ Vx³ Cf

L = 0.5 × 1.18 × 3³ × 0.01575 × 0.3

= 0.05677 N/m

Learn more about Specific heat here:

https://brainly.com/question/31608647

#SPJ11

The gravitational force on a body located at distance R from the center of a uniform spherical mass is due solely to the mass lying at distance r≤R, measured from the center of the sphere. This mass exerts a force as if it were a point mass at the origin. (a) Use the above result to show that if you drill a hole through the Earth and then fall in, you will execute simple harmonic emotion about the Earth's center. Find the time it takes you to return to your point of departure and show that this is the time needed for a satellite to circle the Earth in a low orbit with r∼R


, the radius of the Earth. You may treat the Earth as a uniformly dense sphere, neglect friction and any effects due to the Earth's rotation. (10 points) (b) Show that you will also execute simple harmonic motion with the same period even if the straight hole passes far from the Earth's center.

Answers

If you drill a hole through the Earth and fall in, you will execute simple harmonic motion around the Earth's center.

If you consider a straight hole drilled through the Earth, it can be concluded that you will perform simple harmonic motion even if the straight hole passes far from the Earth's center. The motion is such that when a mass is released, it falls to the center of the Earth, overshoots, and oscillates back and forth, executing simple harmonic motion. This is possible because the gravitational force on a body located at distance R from the center of a uniform spherical mass is due solely to the mass lying at a distance r≤R, measured from the center of the sphere.

So, a simple harmonic motion can be executed about the Earth's center. The time taken by an object to complete one revolution around the Earth is given by the time taken by a satellite to circle the Earth in a low orbit with r ∼ R (the radius of the Earth). Thus, the time taken by the object to return to its point of departure is given by the time taken by the satellite to circle the Earth in a low orbit.

Learn more about gravitational force:

https://brainly.com/question/32609171

#SPJ11

Find the Final Energy - The initial thermal energies of blocks A and B are E
A

=1200J and E
B

F−529.. Block A has three times the number of particles of block B. The blocks arethermally connected an go into equilibrium. What is the final energy of block B in Joules? Energy Transfer - The initial thermal energies of blocks A and B are E
A

=1200 J and E
B

=614 J. Block A has three times the number of particles of block B. The blocks are thermally connected an go into equilibrium. How much energy (in Joules) is transferred from block A to block B?

Answers

The energy transferred from block A to block B is 106.4 Joules.

Find the Final Energy: The initial thermal energies of blocks A and B are E A​=1200J and EB​F−529. Block A has three times the number of particles of block B. The blocks are thermally connected and go into equilibrium.

Find: final energy of block B in Joules.

Given,

E A​=1200J and

EB​=529

From the above expression, we can say that initial energy of block A is greater than block B.

Therefore, Energy will be transferred from block A to block B.

The final thermal energy can be calculated as,

Efinal=A+Efinal

=B

Using the law of energy conservation,

Initial energy = Final energy

E A​+E B​ = Efinal

=A+Efinal

=B

Since energy is conserved,

We can get the final energy of block B from the above expression by just putting the value of EA​ and EB​.

Efinal=B

= E A​+E B​/3+E B

​=1200J+529J/3+1

=1093.6 J

The final energy of block B is 1093.6 Joules.

Energy (in Joules) is transferred from block A to block B

Given, E A​=1200 J and

EB​=614 J

Therefore, the energy transferred from block A to block B is,

E A​- Efinal= Efinal-B

Therefore, EA​-Efinal=B

= 1200J-1093.6J

=106.4 J

The energy transferred from block A to block B is 106.4 Joules.

To know more about energy visit

https://brainly.com/question/1932868

#SPJ11

(a) How fast would a motorist have to be traveling for a yellow (λ=590.00 nm ) traffic light to appear green ( λ=550.00 nm ) because of the Doppler shift? (nm is nanometer and is 10
−9
meters) (b) Should the motorist be traveling toward or away from the traffic light to see this effect? (c) How fast would a motorist have to be traveling for a yellow (λ=590.00 nm) traffic light to appear red (λ=700.00 nm) because of the Doppler shift? Attach File

Answers

(a) A motorist has to be traveling with a speed of 1.26×10^7 m/s towards a yellow traffic light of wavelength 590.00 nm for it to appear green (wavelength 550.00 nm) because of the Doppler shift.For yellow light to appear red (700.00 nm), a motorist would have to be moving away from the traffic light at a high speed of 2.36×10^7 m/s, which is about 8.87% of the speed of light.

When an object, in this case, a motorist, is moving towards a traffic light, the apparent wavelength of the light received by the object is shorter than its original wavelength (known as blue-shift). As we know that green light has a shorter wavelength than yellow light, hence the yellow light will appear green to the motorist when he is moving towards it with enough speed. For yellow light to appear green (550.00 nm), a motorist would have to be moving towards the traffic light at a high speed of 1.26×10^7 m/s, which is about 4.74% of the speed of light.

(b) The motorist should be traveling towards the traffic light to observe this effect. (c) A motorist has to be traveling with a speed of 2.36×10^7 m/s away from a yellow traffic light of wavelength 590.00 nm for it to appear red (wavelength 700.00 nm) because of the Doppler shift. When an object, in this case, a motorist, is moving away from a traffic light, the apparent wavelength of the light received by the object is longer than its original wavelength (known as red-shift). As we know that red light has a longer wavelength than yellow light, hence the yellow light will appear red to the motorist when he is moving away from it with enough speed.

To know more about light visit:

https://brainly.com/question/14036409

#SPJ11

At its peak, a tornado is 70.0 m in diameter and carries 350 km/h winds. What is its angular velocity in revolutions per second? rev/s Suppose a piece of dust finds itself on a CD. If the spin rate of the CD is 370rpm, and the plece of dust is 3.9 cm from the center, what is the total distance (in m ) traveled by the dust in 2 minutes? (Ignore accelerations due to getting the CD rotating.)

Answers

The angular velocity of the tornado at its peak, with a diameter of 70.0 m and wind speed of 350 km/h, is approximately 0.0379 revolutions per second (rev/s).

The angular velocity of the tornado at its peak, with a diameter of 70.0 m and wind speed of 350 km/h, is approximately 0.0379 rev/s. The angular velocity is calculated by converting the wind speed to m/s, finding the distance traveled in one revolution, and dividing the linear speed by the distance.

For the spinning CD, with a spin rate of 370 rpm and a piece of dust located 3.9 cm from the center, the total distance traveled by the dust in 2 minutes is approximately 73.8 meters. This is calculated by converting the spin rate to rev/s, finding the distance traveled in one revolution using the circumference formula, and multiplying it by the spin rate and time.

To know more about Velocity: https://brainly.com/question/80295

#SPJ11

Projectile motion describes objects projected outward near the surface of the earth objects orbiting the earth objects leaving the earth's gravitational field resistance due to friction The resultant displacement is the same as distance travelled (discussed in Ch 2) is always equal to the length of the path along which an object travels is the shortest distance from the starting point directly to the ending point is measured in units of distance divided by time Question 3 (0.5 points) When adding vectors, which of the following is NOT true the order in which the vectors are added is important drawing a diagram may be useful for solving the problem the tip-to-tail method of adding vectors is useful the arrow drawn from the tail of the first vector to the tip of the last vector represents the sum of the vectors The parallelogram method is used for adding vectors used for determining Kindergarden aptitude the same as the Pi method used for resolving a vector into its components The trigonometric function sin( theta) is equal to length of the side opposite the angle theta divided by the length of the hypotenuse (o/h) length of the side adjacent the angle theta divided by the length of the hypotenuse (a/h) length of the side opposite the angle theta divided by the length of the side adjacent the angle theta length of the side adjacent the angle theta divided by the length of the side opposite the angle theta The following are all examples of objects that experience projectile motion near the surface of the earth EXCEPT a thrown baseball a basket ball thrown toward the basket a speeding bullet a clock pendulum Projectile motion near the surface of the earth makes a path in the shape of a parabola triangle straight line trapezoid One yellow tennis ball is projected horizontally while at the same time a red tennis ball is dropped vertically from the same point near the earth's surface. The yellow tennis ball will reach the ground before the red tennis ball reach the ground after the red tennis ball reach the ground at the same time as the red tennis ball enter a lunar orbit You are hanging in a tree 3 meters off the ground. A friend on a nearby 3 meter high hill aims a tennis ball launcher horizontally directly at you. What will happen if you let go of the tree and fall directly to the ground at the same time the gun is fired? (neglecting air resistance) You will hit the ground and be in position to catch the ball as it arrives at the same spot at the same time you do. The tennis ball will pass through the spot where you were hanging. while you will have dropped down below. You will reach the ground before the tennis ball, which will arrive at the same spot after you reach the ground The tennis ball will pass over your head, but below the spot where you were hanging Question 10 (0.5 points) Two vectors can be added accurately by adding their components along chosen axes with the aid of trigonometric functions maximum and minumum magnitudes along each axis in a chosen coordinate system areas formed within right-angle triangles where the vectors form the hypotenuse of each triangle magnitudes, without taking into consideration their directions Projectile motion describes objects projected outward near the surface of the earth objects orbiting the earth objects leaving the earth's gravitational field resistance due to friction Question 2 (0.5 points) The resultant displacement is the same as distance travelled (discussed in Ch 2) is always equal to the length of the path along which an object travels is the shortest distance from the starting point directly to the ending point is measured in units of distance divided by time Question 3 (0.5 points) When adding vectors, which of the following is NOT true the order in which the vectors are added is important drawing a diagram may be useful for solving the problem the tip-to-tail method of adding vectors is useful the arrow drawn from the tail of the first vector to the tip of the last vector represents the sum of the vectors The parallelogram method is used for adding vectors used for determining Kindergarden aptitude the same as the Pi method used for resolving a vector into its components

Answers

For Question 3, the statement that is NOT true when adding vectors is the same as the Pi method used for resolving a vector into its components.

When adding vectors, the Pi method is not used for resolving a vector into its components. The Pi method, also known as the method of trigonometric components, is used to break down a single vector into its horizontal and vertical components. It involves using trigonometric functions (such as sine and cosine) to determine the magnitudes of the components.

On the other hand, when adding vectors, the tip-to-tail method is commonly used. It involves placing the vectors head-to-tail and drawing an arrow from the tail of the first vector to the tip of the last vector. The resulting arrow represents the sum or resultant of the vectors. The parallelogram method can also be used, which involves constructing a parallelogram using the vectors and drawing the resultant vector from the common point of the parallelogram.

Therefore, the statement that is NOT true when adding vectors is that the Pi method is used for resolving a vector into its components.

learn more about "vectors ":- https://brainly.com/question/27854247

#SPJ11

A runner hopes to completo the 10,000−m fun in less than 30.0 min. After running at constant speed for exactly 25.0 min, there are still 1900 II to go. The runner must then accelerate at 0.19 m/s
2
for how many seconds in order to achieve the desired time Express your answer using two significant figures. * Incorrect; Try Again; 3 attempts remaining

Answers

The runner needs to accelerate for approximately 368 seconds in order to achieve the desired time of completing the 10,000m run in less than 30.0 minutes.


To find the time needed to accelerate, we can use the formula:

d = v_i * t + (1/2) * a * t^2

Where:
d = distance to go after running for 25 minutes (1900m)
v_i = initial velocity (unknown)
t = time to accelerate (unknown)
a = acceleration (0.19 m/s^2)

Since the runner is running at a constant speed for the first 25 minutes, the initial velocity is equal to the average velocity during this time. We can calculate it using the formula:

v_i = d / t

Substituting the given values, we have:

v_i = 1900m / 25min

Now, we can use the equation for distance with the known values to solve for t:

1900m = (v_i * t) + (1/2) * (0.19 m/s^2) * t^2

Simplifying the equation, we get:

1900m = (1900m/25min) * t + 0.095t^2

Rearranging the equation, we have:

0.095t^2 + (1900m/25min) * t - 1900m = 0

Solving this quadratic equation for t, we find:

t ≈ 368 seconds

Therefore, the runner needs to accelerate for approximately  in order to achieve the desired time of completing the 10,000m run in less than 30.0 minutes.

learn more about initial velocity

https://brainly.com/question/29110645

#SPJ11

. A student throws a ball vertically upwards from the top of the 7 m high CPUT roof. (a) If, after 2 seconds, he catches the ball on its ways down again, with what speed was thrown? (b) What was the velocity of the ball when its was caught? [9,8 m/s] (c) If the student fails to catch the ball with what speed will it hit the ground?

Answers

The answers to the given questions are as follows:

(a) The ball was thrown upwards from the roof with an initial velocity of -6.3 m/s.

(b) When the ball was caught on its way down after 2 seconds, its velocity was 13.3 m/s in the downward direction.

(c) If the student fails to catch the ball, it will hit the ground with a speed of approximately 13.31 m/s.

To solve the problem, we can use the equations of motion for vertical motion under constant acceleration. In this case, the acceleration is due to gravity and is equal to 9.8 m/s² (assuming no air resistance).

Given:

Initial height (h) = 7 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) = 2 s

(a) To find the initial velocity at which the ball was thrown upwards:

Using the equation of motion:

h = ut + (1/2)gt², where u is the initial velocity.

Plugging in the known values, we have:

7 = u(2) + (1/2)(9.8)(2)²

7 = 2u + 19.6

2u = 7 - 19.6

2u = -12.6

u = -6.3 m/s

Therefore, the ball was thrown upwards with an initial velocity of -6.3 m/s (negative sign indicates the upward direction).

(b) To find the velocity of the ball when it was caught:

Since the ball is caught on its way down after 2 seconds, we can use the equation of motion:

v = u + gt, where v is the final velocity (when caught).

Plugging in the values, we have:

v = -6.3 + (9.8)(2)

v = -6.3 + 19.6

v = 13.3 m/s

Therefore, the velocity of the ball when it was caught is 13.3 m/s (positive sign indicates the downward direction).

(c) If the student fails to catch the ball, it will continue to fall freely under gravity until it hits the ground. To find the speed at which it will hit the ground, we can use the equation:

v² = u² + 2gh,

where

v is the final velocity,

u is the initial velocity,

g is the acceleration due to gravity, and

h is the initial height.

Plugging in the values, we have:

v² = (-6.3)² + 2(9.8)(7)

v² = 39.69 + 137.2

v² = 176.89

v = √176.89

v ≈ 13.31 m/s

Therefore, if the student fails to catch the ball, it will hit the ground with a speed of approximately 13.31 m/s.

Learn more about Equations of Motion from the given link:

https://brainly.com/question/29278163

#SPJ11

If a charge, Q, is located at the center of a spherical volume of radius R
0

=3.65 cm and the total electric flux through the surface of the sphere is Φ
0

=−6.66
C
Nm
2


, what is the total flux through the surface if the radius of the sphere is changed to R=14.1 cm (in
C
Nm
2


).

Answers

Therefore, the total flux through the surface if the radius of the sphere is changed to R = 14.1 cm (in C Nm²) is: Phi = \frac{-6.66}{4.95 × 10^{-10}

Phi = -1.35 × 10^7 C Nm^{-2}

The total electric flux through a surface of a sphere when a charge, Q, is located at the center of a spherical volume of radius R₀ is given by the expression;Phi_0 = \frac{Q}{4πε_0R_0^2}

Where;Phi_0 = the total electric flux through the surface of the sphere Q =the charge located at the center of the spherical volume

ε_0 = the permittivity of free spaceR_0 =the initial radius of the spherical volume.

When the radius of the sphere is changed to R, the total electric flux through the surface of the sphere is given by the expression; Phi = \frac{Q}{4πε_0R^2}

Where; Phi = the total electric flux through the surface of the sphere (in C Nm²)Q = the charge located at the center of the spherical volumeε_0 = the permittivity of free space R =the new radius of the spherical volume.

Thus, the total flux through the surface if the radius of the sphere is changed to R = 14.1 cm is given by; Phi = \frac{Q}{4πε_0R^2} Phi = frac{Q}{4π(8.85 × 10^{−12} N^{-1}m^{-2}) (0.141 m)^2} Phi = \frac{Q}{4.95 × 10^{-10}}

Therefore, the total flux through the surface if the radius of the sphere is changed to R = 14.1 cm (in C Nm²) is; Phi = \frac{-6.66}{4.95 × 10^{-10}}

Phi = -1.35 × 10^7 C Nm^{-2}$$

learn more about Electric flux

https://brainly.com/question/26289097

#SPJ11

At the bow of a ship on a stormy sea, a crewman conducts an experiment by standing on a bathroom scale. In calm waters, the scale reads 176lb. During the Find the magnitude of the maximum upward acceleration experienced by the crewman. storm, the crewman finds a maximum reading of 223lb and a minimum reading of 138lb. Part B Find the magnitude of the maximum downward acceleration experienced by the crewman.

Answers

The values of maximum upward and maximum downward acceleration of the crewman are 7.47 ft/s2 and 20.71 ft/s2, respectively.

According to the question, the upward and downward acceleration of the crewman will cause an increase and decrease in the normal force experienced by him, respectively. So, we can relate the normal force with the acceleration of the crewman by using the equation, Normal force = mg + ma

Where, m is the mass of the crewman, g is the acceleration due to gravity, and a is the acceleration experienced by the crewman. Let us find the value of normal force in calm waters as follows:

Normal force when there is no acceleration = mg + ma = m(g + a)

Therefore, the normal force experienced by the crewman in calm waters is given as:176 = m(g + a) .....(1)

The values of normal force at maximum and minimum readings of the scale:  223 = m(g - a) .....(2)

(when the scale reads the maximum value)138 = m(g + 2a) .....(3) (when the scale reads the minimum value)

On solving equations (1), (2), and (3), we can get the values of mass (m), acceleration due to gravity (g), maximum upward acceleration (a1) and maximum downward acceleration (a2).

So, the values of maximum upward and maximum downward acceleration of the crewman are 7.47 ft/s2 and 20.71 ft/s2, respectively.

Learn more about acceleration: https://brainly.com/question/460763

#SPJ11

A copper wire has a diameter of 1.422 mm. What magnitude current flows when the drift velocity is 1.54 mm/s ? Take the density of copper to be 8.92×10
3
kg/m
3
.

Answers

The magnitude current flows, when the drift velocity is 1.54 mm/s, is 20.3 A.

When the drift velocity is 1.54 mm/s.

We will make use of the formula that relates drift velocity with the current.

We have:

vd = (I / n * A * q )

Where vd is the drift velocity

I is the current

n is the density of free electrons

A is the cross-sectional area of the wire

q is the charge carried by an electron

For copper, the value of n is 8.5 × 1028 electrons/meter cube.

Given that the wire is circular, its cross-sectional area is A = πr2 = πd2/4

where d is the diameter of the wire.

Hence we have:

d = 1.422 mm = 1.422 × 10-3 mA = π/4 x (1.422 × 10-3 m)2= 1.59 x 10-6 m^2

Now we can calculate the current as follows:

I = n * A * q * vd/I = (8.5 x 10^28)(π/4)(1.422 x 10^-3)^2(1.602 x 10^-19)(1.54 x 10^-3)=20.3A

Approximately, the magnitude of the current flowing in the copper wire is 20.3A.

To know more about drift velocity, click here

https://brainly.com/question/1426683

#SPJ11

Problem 2: On the International Space Station an, object with mass m=443 g is attached to a massless string of length L=0.93 m. The string can handle a tension of F
T

=5.92 N before breaking. The object undergoes uniform circular motion, being spun around by the string in a horizontal plane. What is the maximum speed, in meters per second, the mass can have before the string breaks? v=

Answers

The maximum speed that the object can have before the string breaks is 3.65 m/s. Answer: 3.65 m/s

The maximum speed the mass can have before the string breaks is 2.225 m/s.

The force acting on the object in this case is tension.

The maximum tension that the string can handle is given as FT=5.92 N. The object is attached to a string of length L=0.93m.

The maximum speed the mass can have before the string breaks is given as:

v = [FT/ m]1/2

Here, FT = maximum tension that the string can handle

m = mass of the object

v = maximum speed the object can have before the string breaks

Substituting the given values, we get:

v = [5.92/0.443]1/2v = [13.35]1/2v = 3.65 m/s

Therefore, the maximum speed that can be attained is 3.65 m/s. Answer: 3.65 m/s

Read more on speed here: https://brainly.com/question/13943409

#SPJ11

A woman is driving her van with speed 50.0mi/h on a horizontal stretch of road. (a) When the road is wet, the coefficient of static friction between the road and the tires is 0.102. Find the minimum stopping distance (in m). m (b) When the road is dry, μs​=0.595. Find the minimum stopping distance (in m ). m

Answers

The minimum stopping distance on a wet road at a speed of 50.0 mi/h is calculated to be 2035.56 m, while on a dry road it is calculated to be 1359.56 m.

(a) Wet Road

A woman is driving her van with speed 50.0 mi/h on a horizontal stretch of wet road. The coefficient of static friction between the road and the tires is 0.102.

The formula for minimum stopping distance (wet road) is given by: d = (v²/2gμ) + v²/2a

Where

v = initial velocity = 50 miles/hour = (22/15)*50 m/s = 73.33 m/s

μ = coefficient of static friction = 0.102

g = acceleration due to gravity = 9.81 m/s²

a = acceleration = gμ = (9.81)(0.102) = 1.00062 m/s²

Substituting the values in the formula,

d = (73.33²/2*9.81*0.102) + 73.33²/2*1.00062= 52.37 + 1983.19= 2035.56 m

(b) Dry Road

When the road is dry, the coefficient of static friction between the road and the tires is 0.595.

The formula for minimum stopping distance (dry road) is given by: d = (v²/2gμ) + v²/2a

Where

v = initial velocity = 50 miles/hour = (22/15)*50 m/s = 73.33 m/s

μ = coefficient of static friction = 0.595

g = acceleration due to gravity = 9.81 m/s²

a = acceleration = gμ = (9.81)(0.595) = 5.83995 m/s²

Substituting the values in the formula,

d = (73.33²/2*9.81*0.595) + 73.33²/2*5.83995= 15.28 + 1344.28= 1359.56 m

Thus, the minimum stopping distance (in m) when the road is wet is 2035.56m and when the road is dry is 1359.56m.

To know more about minimum stopping distance, refer to the link below:

https://brainly.com/question/14694147#

#SPJ11

A 3.0−cm-tall object is 45 cm in front of a diverging mirror that has a −25 cm focal length.

Answers

the virtual image formed by the diverging mirror is 1.0 cm tall.

A 3.0−cm-tall object is placed 45 cm in front of a diverging mirror that has a −25 cm focal length. In optics, diverging mirrors are curved mirrors that cause the reflected light to diverge. They have a negative focal length. A diverging mirror is also known as a concave mirror.

It is curved inward and is thicker at the edge than at the center. As the light hits the mirror, the rays diverge. When the object is placed beyond the mirror's focal point, the diverging mirror forms an erect, virtual image that is smaller than the object. A concave mirror's image is always virtual, erect, and smaller than the object placed before it.

The formula for the image distance is 1/f = 1/o + 1/i where o is the object distance, i is the image distance, and f is the focal length.In this scenario, the object distance is given as 45 cm and the focal length as −25 cm, substituting these values into the formula, we have:1/−25 = 1/45 + 1/iSimplifying the above equation gives:i = −75 cmThe image distance is negative, indicating that the image is virtual and formed behind the mirror. The magnification of the image can be calculated by using the formula:M = -i/o

Thus, M = −75/45 = −1.67

The magnification is negative, indicating that the image is inverted. The height of the image can be found by using the formula:h1/h2 = i/o

Simplifying the above equation gives:h2 = h1 * o/i

Where h1 is the height of the object, h2 is the height of the image. Substituting the given values into the above equation gives:h2 = 3.0 * −25/−75 = 1.0 cm

To know more about virtual visit:

brainly.com/question/32654110

#SPJ11

Consider a new Turing machine that instead of just moving left and right can also jump to the 5 th tape cell in any given transition. So now δ is defined over, δ:Q×Γ→Q×Γ×{L,R,J5} where J5 moves the head to the 5 th tape cell. Prove that this is equivalent to the standard Turing machine.

Answers

The extended Turing machine with the transition function δ: Q × Γ → Q × Γ × {L, R, J5} is equivalent to the standard Turing machine.

To prove that the new Turing machine with the extended transition function δ: Q × Γ → Q × Γ × {L, R, J5} is equivalent to the standard Turing machine, we need to show that the extended Turing machine can simulate the behavior of a standard Turing machine, and vice versa.

First, let's consider a standard Turing machine with transition function δ: Q × Γ → Q × Γ × {L, R}.

To simulate the behavior of the standard Turing machine on the extended Turing machine, we can simply ignore the J5 transition in the extended transition function. Whenever the standard Turing machine would perform a transition to the left or right, we use the corresponding L or R transition in the extended Turing machine. This way, we are effectively disregarding the ability to jump to the 5th tape cell.

Now, let's consider the extended Turing machine with transition function δ: Q × Γ → Q × Γ × {L, R, J5}.

To simulate the behavior of the extended Turing machine on the standard Turing machine, we need to show that the J5 transition can be simulated using the L and R transitions. We can achieve this by introducing additional states and tape symbols.

We can modify the extended Turing machine to have an additional state and tape symbol to mark the position of the 5th tape cell. Let's call the new state Q_mark and the new tape symbol 'X'. We update the transition function as follows:

δ'(Q_mark, X) = (Q_mark, X, R)    // Stay in Q_mark state and move right

δ'(Q, X) = (Q_mark, X, L)        // Transition from state Q to Q_mark and move left

By using these additional states and symbols, we can simulate the J5 transition of the extended Turing machine on the standard Turing machine. Whenever the extended Turing machine performs a J5 transition, we transition to the Q_mark state and move right to the next cell, effectively simulating the jump to the 5th tape cell.

Therefore, we have shown that the new Turing machine with the extended transition function is equivalent to the standard Turing machine by demonstrating how each can simulate the behavior of the other.

Learn more about the Turing machine at https://brainly.com/question/31418072

#SPJ11

An object with mass M1​ of 2.85 kg is held in place on an inclined plane that makes an angle θ of 40.0∘ with the horizontal (see figure below). The coefficient of kinetic friction between the plane and the object is μk​=0.540. A second object that has a mass M2​ of 4.75 kg is connected to the first object with a massless string over a massless, frictionless pulley. 1) Calculate the initial acceleration of the system once the objects are released. (Express your answer to three significant figures.) 2) Calculate the tension in the string once the objects are released. (Express your answer to three significant figures.)

Answers

The initial acceleration of the system once the objects are released is 2.01 m/s², and the tension in the string once the objects are released is 22.8 N.

In this problem, we will first calculate the acceleration of the system and then the tension in the string. The first object's mass, M1​ = 2.85 kg, and it is held in place on an inclined plane that makes an angle θ of 40.0∘ with the horizontal, and the coefficient of kinetic friction between the plane and the object is μk​ = 0.540. The second object's mass is M2​ = 4.75 kg, which is connected to the first object with a massless string over a massless, frictionless pulley. The initial acceleration of the system once the objects are released is 2.01 m/s². The tension in the string once the objects are released is 22.8 N.

Therefore, the initial acceleration of the system once the objects are released is 2.01 m/s², and the tension in the string once the objects are released is 22.8 N.

To know more about friction, visit:

https://brainly.com/question/24186853

#SPJ11

in the process of nuclear fusion, elements _________.

Answers

In the process of nuclear fusion, elements combine together to form heavier elements.

When two light atomic nuclei combine together, they produce a heavier nucleus with the liberation of a large amount of energy.The fundamental process that powers stars is the fusion of light nuclei into heavier ones. The sun's enormous energy is produced by nuclear fusion. When two hydrogen atoms combine to form a helium atom, about 150 million times more energy is generated than when two hydrogen atoms react chemically.

This energy generation results from the difference in mass between the nuclei before and after the fusion takes place, which is converted into energy.

Learn more about heavier elements in the link:

https://brainly.com/question/13777209

#SPJ11

Two test charges are located in the x−y plane. If q
1

=−2.600nC and is located at x
1

=0.00 m,y
1

=0.8800 m, and the second test charge has magnitude of q
2

=3.200nC and is located at x
2

=1.000 m,y
2

=0.750 m, calculate the x and y components, E
x

and E
y

, of the electric field
E
in component form at the origin, (0,0). The Coulomb force constant is 1/(4πϵ
0

)=8.99×10
9
N⋅m
2
/C
2
E
x

= N/CE
y

= N/C

Answers

The x-component and y-component of the electric field at the origin are 342.2 N/C towards the left and 815.6 N/C towards the positive y-axis, respectively

The electric field is a vector quantity representing the direction and magnitude of the force exerted on a test charge q_o by other test charges. The x and y components of the electric field at the origin caused by two other test charges located in the xy-plane are calculated as follows.

The electric field at a point caused by a point charge is given by Coulomb’s law as follows:

[tex]F = 1 / 4\pi \epsilon q_1 q_2 / r^2[/tex]

where ε is the permittivity of free space, r is the distance between the charges, and [tex]q_1[/tex]and [tex]q_2[/tex] are the charges on the two point charges. For the x-component of the electric field at the origin, the direction of the field is along the x-axis only. For the y-component of the electric field at the origin, the direction of the field is along the y-axis only.

Therefore, the x-component and y-component of the electric field are as follows:

[tex]Ex = Fx / q_0Ey = Fy / q_0[/tex]

The forces exerted on a positive test charge by the two-point charges with negative and positive charges q_1 and q_2 are respectively:

[tex]F_1 = F(q_0, q_1, r_1) = -1.52 * 10^{-3} N[/tex] in the x direction.[tex]F_2 = F(q_0, q_2, r_2) = 2.61 * 10^{-3} N[/tex] at an angle of [tex]32.3^0[/tex] with the negative y-axis.

Using the electric field formula and unit vector notation,

[tex]Ex = F_1x / q_0 + F_2x / q_0 = (-1.52 * 10^{-3} N) / (3.2 * 10^{-9} C) + (2.61 * 10^{-3} N) / (3.2 * 10^{-9} C) = 342.2 N/C[/tex] (towards the left)

[tex]Ey = F_2y / q_0 = (2.61 * 10^{-3} N) / (3.2 * 10^{-9} C) = 815.6 N/C[/tex](towards the positive y-axis).

Therefore, the x-component and y-component of the electric field at the origin are 342.2 N/C towards the left and 815.6 N/C towards the positive y-axis, respectively.

Learn more about permittivity of free space here:

https://brainly.com/question/30403318

#SPJ11

Other Questions
To start a new business, Alysha intends to borrow $23,000 from a local bank. If the bank asks her to repay the loan in 5 equal annual instalments of $5,913.13, determine the bank's effective annual interest rate on the loan transaction. With annual compounding. what nominal rate would the bank quote for this loan? (Round answer to 0 decimol places, e.g. 15\%) 2. What is a tariff? Who ultimately pays the tariff? Who gets the proceeds from the tariffs? What is the money used for? Discuss the advantages and disadvantages to all involved parties (American workers, American consumers, foreign workers, and foreign consumers) of tariffs on imports to the U.S. and retaliatory tariffs imposed by foreign countries on U.S. made goods. 3. In considering the foreign trade issue, discuss how the backgrounds, education, and cultures of the people in the U.S. and the cultures in each trading country affect their understanding of foreign trade's importance. Discuss the importance of understanding and accepting multiple cultural differences in a global context. What are some of the possible negative impacts on international trade if we do not understand and respect cultural differences? What recommendations would you suggest to increase American understanding and acceptance of foreign cultures? Locating scholarly articles: You will need to locate three or more scholarly articles to complete this paper. Scholarly articles must be current and of high quality. These include peer-reviewed academic articles, articles published in journals, and other library resources found in the Purdue Global Library. 1. Click the Library link under Academic Tools. 2. Scroll midway down the page and click "ProQuest ABI/Inform Collection." 3. Make sure "Full text" and "Peer Reviewed" are checked. Consider a certain type of machinery that you can buy in the USA for $60,000 and in Japan for 6,780,000 yen. The current exchange rate is 0.01 dollar per yen. Carefully following all numeric instructions, calculate the real exchange rate. Round your final answer to two decimal places. 1. Describe how drug cartels are able to recruit new members whentheir members are murdered.2. Describe also how the concept ofdrug cartels ' corporate social responsibility makes it difficult tocontrol drug trafficking in Latin American countries3. Do you agreethat drug cartels are actually socially responsible? If not, whynot? CONSERVATION OF ENERGY. Calculate the final velocity (at the ground, h=0) the chandelier would have if the rope used to hang it suddenly broke, and the chandelier plummets to the ground. (mass of the chandelier 18kg, height from the ground 6ft) A car is moving at 9 m/s when it accelerates at 1.9 m/s2 for 27 seconds. What was the final speed? The logical statement represents the inverse of the conditional statement If you are human, then you were born on Earth. What is an inclusive cache? Give one example to explain the inclusion property for a multi-level cache hierarchies. Additionally, please list one advantage and disadvantage of the inclusive cache design. Previous question Let W be a random vaiable giving the rumber of heads minis the rumber of tals in three losses of a coin. Assuming that a head is swice as laely to occur, find the peobablity distroution of the random variable W. Complete the folowing srobabaly datribution of W Two narrow slits 50m apart are illuminated with light of wavelength 620 nm. The light shines on a screen 1.2 m distant. What is the angle of the m=2 bright fringe? Express your answer in radians. \ Incorrect; Try Again; 19 attempts remaining Part B How far is this fringe from the center of the pattern? Express your answer with the appropriate units. X Incorrect; Try Again; 19 attempts remaining In this discussion, you will examine how leadership influences organizational culture overall and specifically as it relates to the inclusion of diverse people. You will explain why it is important for leaders to be inclusive of diverse people and cultures, and any personal experience you have with this. Finally, you will do some research and generate a list of ways leaders can be inclusive and authentic in their leadership. This list will be useful to identify ways you can enhance your own leadership in these areas.Prior to attempting this discussion forum,Read the required sections from Chapters 9, 12, and 14 from Leadership: Theory and Practice.Read Chapter 10 in An Introduction to Leadership.Consider your own experience observing and experiencing leaders support for diversity and inclusion in an organization of your choice.Find at least one resource (either scholarly or non-scholarly) on inclusive and authentic leadership You decide to travel by car for your holiday visits this year. You leave early in the morning to avoid congestion on the roads This enables you to drive at a comfortable speed of v 1 =65.6mph for t 1 =2.84 hours. However, after this time, you inexpectedly come to a stop for t stop =33.6 min. Traffic starts moving again and you finish your travel at v 2 =56.2mphf additional t 2 =0.80 hours. There are 1609 meters in one mile. What was the total distance d traveled? d= What was the average speed v ? v = In photoelectric effect, the stopping potential value is0.6Vwhen the light source is kept at a distance of10cm. When the source is kept at20cmaway, the stopping potential will be A)0.6VB)0.3VC)1.2VD)2.4V This problem checks that you can use the formula that gives the electric field due to a spherical shell of charge. This formula can be calculated using the superposition principle we discussed in class and gives E = 4 0 1 r 2 Q r ^ outside the shell and zero inside the shell. The distance r is the distance between the center of the shell and the point of interest. Consider a sphere with radius 4 cm having a uniformly distributed surface charge of +25nC. What is the magnitude of the electric field it creates at a point 6 cm from its center, in units of kN/C ? For a monopolist's product, the cost function is c=0.006q3+20q+5000 and the demand function is p=4504q. Find the profit-maximizing output. The profit-maximizing output is (Round to the nearest whole number as needed.) For the demand equation, find the rate of change of price p with respect to quantity q. What is the rate of change for the indicated value of q ? p=e0.004q;q=250 The rate of change of price p with respect to quantity q when q=250 is (Round to five decimal places as needed.) A question or request for data is known as: a clip a join a projection a query Warren Company began the accounting period with a $40,000 debit balance in its accounts receivable account. During the accounting period, the company recorded revenue on account amounting to $92,000. The accounts receivable account ot the end of the accounting period contained a $20,000 debit balance. Based on this information, what is the amount of cash collected from customers during the period? Multiple Choice a. $78,000 b. $100,000 c. $32.000 d. $112,000 Choose either "PROGRAMS AT A GLANCE" or "PRACTICES AT A GLANCE" that you see on the homepage. You will notice that the website rates the programs/practices as having NO EFFECTS, PROMISING or EFFECTIVE. Choose 1 "NOT EFFECTS" and 1 "EFFECTIVE" practice or program, conduct an informal "compare/contrast" analysis, then respond to these question: a. Briefly provide the title and describe your 2 choices from "programs" or "practices" (provide web links to each article). b. Which one was rated "NO EFFECTS" and why? c. Which one was rated "EFFECTIVE" and why? c. What is your overall impression of the www.crimesolutions.gov rating system? Reference https://crimesolutions.ojp.gov/ 3. On January 1, 2021, C Corporation awarded restricted stockunits (RSUs) representing 40 million of its $2 par common shares tokey officers, subject to forfeiture if employment is terminatedwithin 1.0 Case Selection In assigned groups (see General Course Information - Other Resources section) you will become the ERP Project team of New Co. Decide on an industry for your new company to exist within and follow through with a full implementation strategy for an ERP. Use cases from your textbook for examples to base your company on. Make sure to customize your scenario, and not use one directly from the textbook. Review lesson slide decks for further details on the process. 1.1 Important Details a. Your companys industry b. Methodology chosen and detailed c. Software/Vendor selected, and why (based on facts/industry/etc) d. Example negotiation/contract including key details (maintenance fees, licensing, etc). e. Infrastructure decision and why f. Integration and Implementation plan (focus on key details) g. Example communications at key steps for change management h. Invent an obstacle for the implementation and solution