You built an android that has a subcircuit containing a power supply, a tactile sensor, and a fuse where safe operation should keep current below 250 mA. You measured that your sensor is dissipating 12 W, the power supply is pro- viding 12.2 W, and the voltage drop across the fuse is 500 mV. Is your circuit properly protected?

Answers

Answer 1

Answer:

a co mam zroic!!

Explanation:


Related Questions

A sandy soil has a natural water content of 12% and bulk unit weight of 18.8 kN/m3 . The void ratios corresponding to the densest state (emin) and loosest state (emax) of this soil are 0.48 and 0.88, respectively. Find the relative density and degree of saturation for this soil.

Answers

Answer:

The value of relative density is 75 % while that of degree of saturation is 54.82%.

Explanation:

Given Data:

Bulk density of Sandy Soil=[tex]\gamma_b=18.8\ kN/m^3[/tex]

Void Ratio in Densest state=[tex]e_{max}=0.88[/tex]

Void Ratio in Loosest state=[tex]e_{min}=0.48[/tex]

Water content=[tex]w=12\%[/tex]

To Find:

Relative Density=[tex]D_R=\dfrac{e_{max}-e}{e_{max}-e_{min}} \times 100 \%[/tex]

Degree of Saturation=[tex]S=\dfrac{w\times G_s}{e}[/tex]

Now all the other values are given except e. e is calculated as follows

e is termed as In situ void ratio and is given as

[tex]e=\dfrac{\gamma_w \times G_s-\gamma_d}{\gamma_d}[/tex]

Here

γ_w is the density of water whose value is 1

G_s is the constant whose value is 2.65

γ_d is the dry density of the sandy soil which is calculated as follows:

[tex]\gamma_d=\dfrac{\gamma_b}{1+\dfrac{w}{100}}[/tex]

Putting values

[tex]\gamma_d=\dfrac{18.8}{1+\dfrac{12}{100}}\\\gamma_d=16.78\ kN/m^3=1.678 g/cc \\[/tex]

Putting this value in the equation of e gives

[tex]e=\dfrac{1 \times 2.65-1.678}{1.678}\\e=0.579=0.58[/tex]

So the value of Relative density is given as

[tex]D_R=\dfrac{e_{max}-e}{e_{max}-e_{min}} \times 100 \%\\D_R=\dfrac{0.88-0.58}{0.88-0.48} \times 100 \%\\D_R=75 \%[/tex]

So the value of relative density is 75 %

Now the value of degree of saturation is given as

[tex]S=\dfrac{w\times G_s}{e}\\S=\dfrac{12\times 2.65}{0.58}\\S=54.82 \%[/tex]

The value of degree of saturation is 54.82%.

Answer:

The relative density = 0.83 which is equivalent to 83%

The degree of saturation, S = 0.58 which gives 58% saturation

Explanation:

The parameters given are;

Water content W% = 12%

Bulk unit weight, γ = 18.8 kN/m³

Void ratio of  [tex]e_{min}[/tex]  = 0.48

Void ratio of  [tex]e_{max}[/tex] = 0.88

[tex]G_S[/tex] = Constant (As learnt from an answer to the question on the current page) = 2.65 for Sandy soil

[tex]\gamma =\dfrac{W}{V} = \dfrac{W_{w}+W_{s}}{V}[/tex]

Where, V = 1 m³

W = 18.8 KN

Bulk unit weight, γ = [tex]\gamma_d[/tex] × (1 + W)

∴ 18.8 =  [tex]\gamma_d[/tex] × (1 + 0.12)

[tex]\gamma_d[/tex] = 18.8/ (1.12) = 16.79 kN/m³

[tex]\gamma_d =\dfrac{W_s}{V} = \dfrac{W_{s}}{1} = 16.79 \, kN/m^3[/tex]

[tex]W_s[/tex] = 16.79 kN

∴ [tex]W_w[/tex] = 18.8 kN - 16.79 kN = 2.01 kN

[tex]m_w = 2.01/9.81 = 0.205 \, kg[/tex]

Volume of water = 0.205 m³

[tex]\gamma = \dfrac{GS \times \gamma _{w}\times \left (1+w \right )}{1 + e} = \dfrac{GS \times 9.81\times \left (1+0.12 \right )}{1 + e} =18.8[/tex]

e + 1 = 0.58×GS = 0.58×2.65 =

e = 1.54 - 1 = 0.55

The relative density is given by the relation;

[tex]Relative \ density, Dr=\dfrac{e_{max} - e}{e_{max} - e_{min}}[/tex]

[tex]Relative \ density, Dr=\dfrac{0.88 - e}{0.88 - 0.48} = \dfrac{0.88 - 0.55}{0.4} = 0.83[/tex]

The relative density = 0.83

The relative density in percentage = 0.83×100 = 83%

S·e = GS×w = 0.12·2.65

S×0.55 = 0.318

The degree of saturation, S = 0.58

The degree of saturation, S in percentage = 58%.

If gear X turns clockwise at constant speed of 20 rpm. How does gear y turns?

Answers

Answer:

Gear Y would turn Counter-Clockwise do to the opposite force created from gear X.

                         

                          Hope this helped!  Have a great day!

A piston–cylinder device contains 0.78 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R = 0.2968 kJ/kg·K. The constant volume specific heat of nitrogen at room temperature is cv = 0.743 kJ/kg·K. (Round the final answer to five decimal places.)

Answers

Answer:

The entropy change of nitrogen during this process. is - 0.32628 kJ/K.

Explanation:

Solution

Given that:

A piston cylinder device contains =0.78 kg of nitrogen gas

Temperature = 37°C

The  nitrogen gas constant of R = 0.2968 kJ/kg.K

At room temperature cv = 0.743 kJ/kg.K

Now,

We assume that at specific condition the nitrogen can be treated as an ideal gas

Nitrogen has a constant volume specific heat at room temperature.

Thus,

From the polytropic relation, we have the following below:

T₂/T₁ =(V₁/V₂)^ n-1 which is,

T₂ = T₁ ((V₁/V₂)^ n-1

= (310 K) (2)^1.3-1 = 381.7 K

So,

The entropy change of nitrogen is computed as follows:

ΔSN₂ = m (cv₁ avg ln T₂/T₁ + ln V₂/V₁)

= (0.78) ((0.743 kJ/kg .K) ln 381.7 K/310K + (0.2968 kJ/kg. K) ln (0.5))

= 0.57954 * 0.2080 +  (-0.2057)

= 0.12058 + (-0.2057) = -0.32628

Therefore the entropy change of nitrogen during this process. is - 0.32628 kJ/K.

(25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinusodal force given by p(t) = P sin ωt. All positions are measured from equilibrium. Use m_1=1.5 kg, m_2=2 kg, k=7 N/m, b=3.2 (N∙s)/m, P=15 N, =12 rad/sec. Hint: first create the state space model for the system. Then use SS2TF to make the two transfer functions and then the two Bode plots (include with submission). Use the plots to find the steady-state equations.

Answers

Njjhvgghjjjhhhhhhhb hhh. I h. I’ve. Know

A particular Table in a relational database contains 100,000 Data Records/rows, each of which Data Record/row requires 200 bytes. A select statement returns all Data Records/rows in the Table that satisfy an equality search on an attribute. Estimate the time in milliseconds to complete the query when each of the following Indexes on that attribute is used.
A. No Index (Heap File of Data Records)
B. A Static Hash Index (with no overflow buckets/Pages). Assume the cost of applying the hash function is H, negligible.

Answers

The correct question is;

A particular table in a relational database contains 100,000 rows, each of which requires

200 bytes of memory. Estimate the time in milliseconds to to insert a new row into the

table when each of the following indices on the related attribute is used. Assume a page

size of 4K bytes and a page access time of 20 ms.

a. No index (heap file)

b. A clustered, non-integrated B+ tree index, with no node splitting

required. Assume that each index entry occupies 100 bytes. Assume that the

index is 75% occupied and the actual data pages are 100% occupied. Assume

that all matching entries are in a single page.

Answer:

A) 20 ms

B) 120 ms

Explanation:

A) Append (at the end of file). Just one IO, i.e., 20 ms

B) Now, when we assume that each entry in the index occupies 100 bytes, then an index page can thus hold 40 entries. Due to the fact that the data file occupies 5000 pages, the leaf level of the tree must contain at least 5000/40 pages which is 125 pages.

So, the number of levels in the tree (assuming page 75% occupancy in the

index) is (log_30 (125)) + 1 = 3. Now, if we assume that the index is clustered and not integrated with the data file and all matching entries are in a single

page, then 4 I/O operations and 80ms are required to retrieve all matching

records. Two additional I/O operations are required to update the leaf page

of the index and the data page. Hence, the time to do the insertion is

120ms.

Answer every question of this quiz
Please note: you can answer each question only once.
Which number shows the intake valve?
OK

Answers

I'd say number 4, number 3 looks like an exhaust valve

For a statically indeterminate axially loaded member, Group of answer choices The total deflection between end A and end B of an axially loaded member must not be zero. The summation of the forces is not zero. The summation of the reaction forces is equal to the applied load. The applied load must exceed the total reaction forces. The compatibility condition cannot be satisfied, since it is indeterminate.

Answers

Answer: The summation of the reaction forces is equal to the applied load.

Explanation:

When solving an indeterminate structure, it is important for one to satisfy the force-displacement requirements, compatibility, and the equilibrium of the structure.

With regards to the above question, for a statically indeterminate axially loaded member, the summation of the reaction forces will be equal to applied load. Here, the summation of the reactive forces will then be zero. This is a condition that is necessary to solve the unknown reaction forces.

Describe with an example how corroded structures can lead to environment pollution? ​

Answers

According to EonCoat, corrosion is the process of decay on a material caused by a chemical reaction with its environment. Corrosion of metal occurs when an exposed surface comes in contact with a gas or liquid, and the process is accelerated by exposure to warm temperature, acids, and salts.” (1)
Although the word ‘corrosion’ is used to describe the decay of metals, all natural and man-made materials are subject to decay, and the level of pollutants in the air can speed up this process.

Determine the largest load P that can be a applied to the frame without causing either the average normal stress or the average shear stress at section a-a to exceed σ = 160 MPa and τ = 60 MPa , respectively. Member CB has a square cross section of 26 mm on each side.

Answers

Answer:

(The diagram of the question is given in Attachment 1)

The largest load which can be applied is:

P=67.62 kN

Explanation:

Make a Free body Diagram:

All the forces are shown in the diagram in Attachment 2.

Analyze the equilibrium of Joint C in Figure (a):

∑ F(y)= 0 (Upwards is positive)

[tex]F_{BC}sin\theta-P=0\\\frac{4}{5}F_{BC} - P=0\\F_{BC}=\frac{5}{4}P\\\\F_{BC}=1.25P[/tex]

Substitute F(BC) in Figure (b):

∑ F(x)= 0 (Towards Right is positive)

[tex]N_{a-a} - F_{BC}cos\theta=0\\N_{a-a}-1.25P(\frac{3}{5})=0\\N_{a-a}=0.75P[/tex]

∑ F(y)= 0 (Upwards is positive)

[tex]F_{BC}sin\theta- V_{a-a}= 0\\(\frac{4}{5})1.25P-V_{a-a}=0\\V_{a-a}=P[/tex]

Find Cross Sectional Area:

The cross sectional area of a-a:

[tex]A_{a-a}= \frac{(0.026)(0.026)}{3/5}\\A_{a-a}= 1.127\cdot10^{-3}[/tex]

Find P from Normal Stress Equation:

σ = N(a-a)/A(a-a)

Substitute values:

[tex]160\cdot10^6=\frac{0.75P}{1.127\cdot10^{-3}}\\P=240.42\cdot10^3 N\\P=240.42 kN[/tex]

Find P from Shear Stress Equation:

Т= V(a-a)/A(a-a)

Substitute values:

[tex]60\cdot10^6=\frac{P}{1.127\cdot10^{-3}}\\P=67.62\cdot10^{3}N\\P=67.62kN[/tex]

Results:

To satisfy both the condition, we have to choose the lower value of P.

P=67.62 kN

What is 90 to the power of 46

Answers

Answer:Just multiply 90 by itself 46 times

Explanation:

do it

Q2. Air at 400°C and 1.7 bar flows through a horizontal 8.2-cm D pipe at a velocity of 50.0 m/s.
I. Calculate Éx (W)? Assuming ideal gas behavior and Mol.Wt (Air)=29 g/mol. [2 Marks]
II. If the air is cooled to 250°C at constant pressure, what is AĖ,? [2 Marks]
Why would it be incorrect to say that the rate of transfer of heat to the gas must equal the rate of
change of kinetic energy? [1 Mark]
(Felder and Rousseau, 2005)​

Answers

Answer:

The correct answer is (I) 290.81 W (II) 83.413 W (III) It is not correct to say that the rate of heat transfer must be the same to the heat of change in kinetic energy

Explanation:

Solution

Recall that:

Pressure (p) = 1.7 bar

Temperature (T₁) = 400°C which is = 673k

The velocity (v) = 50.0 m/s.

The pipe diameter (D)= 8.2 cm approximately  8.2 * 10 ^⁻2 m

The molecular air weight  (M)= 29 g/mol

Suppose Air is seen as an ideal gas

where pv = mrT

p =(m/v) r T = p = ρrT

So,

r = the characteristics of gas constant (R/m)

p = pressure

R =The universal gas constant

T = temperature

ρ = density which is (kg/m³)

R  is 8.314 J/mole -k

Then

1.7 * 10 ^5 = ρ * (8.314 /29) * 673

The density ρ = 881.09 g/ m³

(I) The mass flow rate = ρAV

thus,

m = 881.09 *π/4 ( 8.2 * 10^⁻2)² * 50

Therefore m = 232.65 g/s

We already know that

k= 1/2  mv²

k =1/2 *232.65/1000 * (50)²

so at 400°C k = 290.81 W

(II) Now in solving the  process of the constant pressure we recall that

P = ρrT

Air is cooled  to 250°C

p/r = ρT this is constant

So,

ρ₁T₂ = ρ₂T₂

881.09 * 673 = ρ₂ * 523

ρ₂ = 1133.79 g/m³

Thus,

m = ρ₂AV = 1133.79 * π /4 (8.2 * 10^ ⁻2) * 50

Hence m = 299.37 g/s

now,

k =1.2 mv² = 1.2 *(299.37)/1000 * (50)²

At 250°C, k = 374.22 W

Thus,

Δk = k ( 250°c) - k ( 400°c)

Δk = 374.22 - 290.81

Therefore,

Δk=83.413 W

(III) The steady state formula is given below

Q = W + ΔkE +ΔPE + ΔH

Now,

W = work (shaft)

Q =The rate of transfer of heat

ΔkE = The change in kinetic energy

ΔPE= The change in potential energy

ΔH =Change in enthalphy

For no shaft work, W =0

The horizontal pipe ΔPE = 0

Therefore,

The rate of heat transfer is explained as follows:

Q =ΔkE + ΔH

Because of the enthalphy,  Q is not equal to ΔkE

Finally, it is not correct to say that the rate of heat transfer must be the same to the heat of change in kinetic energy.

A construction company distributes its products by trucks loaded at its loading station. A backacter in conjunction with trucks are used for this purpose. If it was found out that on an average of 12 trucks per hour arrived and the average loading time was 3 minutes for each truck. A truck must queue until it is loaded. The backacter’s daily all-in rate is GH¢ 1000 and that of the truck is GH¢ 400.
a) Compute the operating characteristics: L, Lq, W, Wq, and P.

b) The company is considering replacing the backacter with a bigger one which will have an average service rate of 1.5 minutes to serve trucks waiting to have their schedules improved. As a manager, would you recommend the new backacter if the daily all-in rate is GH¢ 1300.

c) The site management is considering whether to deploy an extra backwater to assist the existing one. The daily all-in-rate and efficiency of the new backwater is assumed to be the same as that of the existing backwater. Should the additional backwater be deployed?

Answers

Answer:

a) [tex]L = 1.5[/tex]

[tex]L_q = 0.9[/tex]

[tex]W = \dfrac{1 }{8 } \, hour[/tex]

[tex]W_q = \dfrac{3}{40 } \, hour[/tex]

[tex]P = \dfrac{3}{5 }[/tex]

b) The new backacter should be recommended

c) The additional backacter should not be deployed

Explanation:

a) The required parameters are;

L = The number of customers available

[tex]L = \dfrac{\lambda }{\mu -\lambda }[/tex]

μ = Service rate

[tex]L_q[/tex] = The number of customers waiting in line

[tex]L_q = p\times L[/tex]

W = The time spent waiting including being served

[tex]W = \dfrac{1 }{\mu -\lambda }[/tex]

[tex]W_q[/tex] = The time spent waiting in line

[tex]W_q = P \times W[/tex]

P = The system utilization

[tex]P = \dfrac{\lambda }{\mu }[/tex]

From the information given;

λ = 12 trucks/hour

μ = 3 min/truck = 60/3 truck/hour = 20 truck/hour

Plugging in the above values, we have;

[tex]L = \dfrac{12 }{20 -12 } = \dfrac{12 }{8 } = 1.5[/tex]

[tex]P = \dfrac{12 }{20 } = \dfrac{3}{5 }[/tex]

[tex]L_q = \dfrac{3}{5 } \times \dfrac{3}{2 } = \dfrac{9}{10 } = 0.9[/tex]

[tex]W = \dfrac{1 }{20 -12 } = \dfrac{1 }{8 } \ hour[/tex]

[tex]W_q = \dfrac{3}{5 } \times \dfrac{1}{8 } = \dfrac{3}{40 } \, hour[/tex]

(b) The service rate with the new backacter = 1.5 minutes/truck which is thus;

μ = 60/1.5 trucks/hour = 40 trucks/hour

[tex]P = \dfrac{12 }{40 } = \dfrac{3}{10}[/tex]

[tex]W = \dfrac{1 }{40 -12 } = \dfrac{1 }{38 } \, hour[/tex]

[tex]W_q = \dfrac{3}{10 } \times \dfrac{1}{38 } = \dfrac{3}{380 } \, hour[/tex]

λ = 12 trucks/hour

Total cost = [tex]mC_s + \lambda WC_w[/tex]

m = 1

[tex]C_s[/tex] = GH¢ = 1300

[tex]C_w[/tex] = 400

Total cost with the old backacter is given as follows;

[tex]1 \times 1000 + 12 \times \dfrac{1}{8} \times 400 = \$ 1,600.00[/tex]

Total cost with the new backacter is given as follows;

[tex]1 \times 1300 + 12 \times \dfrac{1}{38} \times 400 = \$ 1,426.32[/tex]

The new backacter will reduce the total costs, therefore, the new backacter is recommended.

c)

Here μ = 3 min/ 2 trucks = 2×60/3 truck/hour = 40 truck/hour

[tex]\therefore W = \dfrac{1 }{40 -12 } = \dfrac{1 }{38 } \, hour[/tex]

Total cost with the one backacter is given as follows;

[tex]1 \times 1000 + 12 \times \dfrac{1}{8} \times 400 = \$ 1,600.00[/tex]

Total cost with two backacters is given as follows;

[tex]2 \times 1000 + 12 \times \dfrac{1}{38} \times 400 = \$ 2,126.32[/tex]

The additional backacter will increase the total costs, therefore, it should not be deployed.

The thrust F of a screw propeller is known to depend upon the diameter d,speed of advance \nu ,fluid density p, revolution per second N, and the coefficient of viscosity μ of the fluid. Determine the dimensions of each of the variables in terms of L,M,T,and find an expression for F in terms of these quantities

Answers

Answer:

screw thrust = ML[tex]T^{-2}[/tex] 

Explanation:

thrust of a screw propeller is given by the equation = p[tex]V^{2}[/tex][tex]D^{2}[/tex] x [tex]\frac{ND}{V}[/tex]Re

where,

D is diameter

V is the fluid velocity

p is the fluid density

N is the angular speed of the screw in revolution per second

Re is the Reynolds number which is equal to  puD/μ

where p is the fluid density

u is the fluid velocity, and

μ is the fluid viscosity = kg/m.s = M[tex]L^{-1}[/tex][tex]T^{-1}[/tex]

Reynolds number is dimensionless so it cancels out

The dimensions of the variables are shown below in MLT

diameter is m = L

speed is in m/s = L[tex]T^{-1}[/tex]

fluid density is in kg/[tex]m^{3}[/tex] = M[tex]L^{-3}[/tex]

N is in rad/s = L[tex]L^{-1}[/tex][tex]T^{-1}[/tex] =

If we substitute these dimensions in their respective places in the equation, we get

thrust = M[tex]L^{-3}[/tex][tex](LT^{-1}) ^{2}[/tex][tex]L^{2}[/tex][tex]\frac{T^{-1} L}{LT^{-1} }[/tex]

= M[tex]L^{-3}[/tex][tex]L^{2}[/tex][tex]T^{-2}[/tex]

screw thrust = ML[tex]T^{-2}[/tex] 

This is the dimension for a force which indicates that thrust is a type of force

A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present one-way travel time (including time at intermediate yards) is 20 hours, and the rail freight rate is $20 per ton. There is a truck service that competes with the railroad, running over a roughly parallel road for approximately the same distance, at an average speed of 48km per hour and a rate of $30 per ton. A new highway is planned to replace the existing roads; it is expected that most of the traffic will be trucks (auto usage is expected to be negligible). The performance function of the new facility is t_T = t_0 + bV_T, where V_T is the flow in trucks per hour, t_0 = 10 hours, b = 0.08 hour per truck per hour. The railroad's estimate of the demand function is: V_T/V_R = a_0(t_r/t_R)^a_1 (c_T/c_R)^a_2 where t_T and t_R are the trip times (in hours) by truck and rail, respectively, c_T and c_R are the corresponding rates, V_T and V_R are the corresponding flows and a_0, a_1 and a_2 are parameters. The total demand is likely to remain constant at V_TOT = 200 tons per hour. The rail system is utilized at only a fraction of capacity, so its performance function is flat (travel time is constant, independent of volume). If a_0 = 1, a_1 = -1 and a_2 = -2, find the present flows of freight by truck and rail. Make an estimate of the equilibrium flows if the new highway were built. With the new highway built, what would the equilibrium flow be in each of the following two cases: if the railroad dropped its rate to $15 per ton? if truckers were taxed $5 per ton to help pay for the new highway?

Answers

Answer:

i) VT = 52.16

VR = 147.85

ii) VT = 61

VR = 138.99

Explanation:

The step by step solution is been done, please check the attached file below to see it

A multi-plate clutch is to transmit 12 kW at 1500 rev/min. The inner and outer radii for the plates are to be 50 mm and 100 mm respectively. The maximum axial spring force is restricted to lkN. Calculate the necessary number of pairs of surfaces if ll = 0-35 assuming constant ‘vyear. What will be the necessary axial force?

Answers

Answer:

The uniform pressure for the necessary axial force  is  W = 945 N

The uniform wear for the necessary axial force is  W = 970.15 N

Explanation:

Solution

Given that:

r₁ = 0.1 m

r₂ = 0.05m

μ = 0.35

p = 12 N or kW

N = 1500 rpm

W = 1000 N

The angular velocity is denoted as  ω= 2πN/60

Here,

ω = 2π *1500/60 = 157.07 rad/s

Now, the power transferred becomes

P = Tω this is the equation (1)

Thus

12kW = T * 157.07 rad/s

T = 76.4 N.m

Now, when we look at the uniform condition, we have what is called the torque that is frictional which acts at the frictional surface of the clutch dented as :

T = nμW R this is the equation (2)

The frictional surface of the mean radius is denoted by

R =2/3 [(r₁)³ - (r₂)³/(r₁)² - (r₂)²]

=[(0.1)³ - (0.05)³/[(0.1)² - (0.05)²]

R is =0.077 m

Now, we replace this values and put them into the equation (2)

It gives us this, 76. 4 N.m = n * 0.35* 1000 N * 0.077 m

n = 2.809 = 3

The number of pair surfaces is = 3

Secondly, we determine the uniform wear.

So, the mean radius is denoted as follows:

R = r₁ + r₂/ 2

=0.1 + 0.05/2

=0.075 m

Now, we replace the values and put it into the equation (2) formula

76. 4 N.m = n *0.35* 1000 N * 0.075 m

n= 2.91 = 3

Again, the number of pair surfaces = 3

However, for the uniform pressure with regards to the number of clutch plates is 3 we can derive the necessary axial force from the equation (2)

76. 4 N.m = 3 * 0.35 * W *0.077 m

W = 945 N

Also, for the uniform wear with regards to the number of clutch plates is 3 we can derive the necessary axial force from the equation (2)

76. 4 N.m = 3 * 0.35 * W *0.075 m

W = 970. 15 N

Steam flows steadily through a turbine at a rate of 45,000 lbm/h, entering at 1000 psia and 9008F and leaving at 5 psia as saturated vapor. If the power generated by the turbine is 4 MW, determine the rate of heat loss from the steam.

Answers

182.28 Btu/s (all done)

To find the reactance XLXLX_L of an inductor, imagine that a current I(t)=I0sin(ωt)I(t)=I0sin⁡(ωt) , is flowing through the inductor. What is the voltage V(t)V(t)V(t) across this inductor?

Answers

Answer:

V(t) = XLI₀sin(π/2 - ωt)

Explanation:

According to Maxwell's equation which is expressed as;

V(t) = dФ/dt ........(1)

Magnetic flux Ф can also be expressed as;

Ф = LI(t)

Where

L = inductance of the inductor

I = current in Ampere

We can therefore Express Maxwell equation as:

V(t) = dLI(t)/dt ....... (2)

Since the inductance is constant then voltage remains

V(t) = LdI(t)/dt

In an AC circuit, the current is time varying and it is given in the form of

I(t) = I₀sin(ωt)

Substitutes the current I(t) into equation (2)

Then the voltage across inductor will be expressed as

V(t) = Ld(I₀sin(ωt))/dt

V(t) = LI₀ωcos(ωt)

Where cos(ωt) = sin(π/2 - ωt)

Then

V(t) = ωLI₀sin(π/2 - ωt) .....(3)

Because the voltage and current are out of phase with the phase difference of π/2 or 90°

The inductive reactance XL = ωL

Substitute ωL for XL in equation (3)

Therefore, the voltage across inductor is can be expressed as;

V(t) = XLI₀sin(π/2 - ωt)

A heat engine with a thermal efficiency of 25% is connected to an electric generator with an efficiency of 95%. A liquid fuel providing heat is consumed at 2.29 litres per hour. What is the power output in kW from the generator?
Heat of Combustion: 43.7 MJ/kg
Density of the fuel: 0.749 g/ml

Answers

Answer:

  4.94 kW

Explanation:

The heat energy produced by the fuel in one hour is ...

  (2.29 L/h)(0.749 kg/L)(43.7 MJ/kg) = 74.954677 MJ/h

Then the power output is ...

  (74.954677 MJ/h)(1 h)/(3600 s) = 20.8207 kJ/s

Multiplying this heat energy by the efficiencies of the processes involved, the output power is ...

  (20.8207 kW)(0.25)(0.95) = 4.94 kW

Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B = 30.0 m2 y B ⦁ C = 35.0 m2 . Encuentre A.

Answers

Answer:

[tex]\| \vec A \| = 6.163\,m[/tex]

Explanation:

Sean A, B y C vectores coplanares tal que:

[tex]\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A})[/tex], [tex]\vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B})[/tex] y [tex]\vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})[/tex]

Donde [tex]\| \vec A \|[/tex], [tex]\| \vec B \|[/tex] y [tex]\| \vec C \|[/tex] son las normas o magnitudes respectivas de los vectores A, B y C, mientras que [tex]\theta_{A}[/tex], [tex]\theta_{B}[/tex] y [tex]\theta_{C}[/tex] son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

[tex]\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}[/tex]

[tex]\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}[/tex]

Asimismo, se sabe que [tex]\| \vec B \| = 5\,m[/tex], [tex]\theta_{B} = 60^{\circ}[/tex], [tex]\vec A \,\bullet \,\vec B = 30\,m^{2}[/tex], [tex]\vec B\, \bullet\, \vec C = 35\,m^{2}[/tex], [tex]\|\vec A \| = \| \vec C \|[/tex] y [tex]\theta_{C} = \theta_{A} + 25^{\circ}[/tex]. Entonces, las ecuaciones quedan simplificadas como siguen:

[tex]30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})[/tex]

[tex]35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})][/tex]

Es decir,

[tex]30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})[/tex]

[tex]35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})][/tex]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

[tex]\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}[/tex]

[tex]\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}[/tex]

Es decir,

[tex]\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}[/tex]

[tex]\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}[/tex]

Las nuevas expresiones son las siguientes:

[tex]30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})[/tex]

[tex]35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})][/tex]

Ahora se simplifican las expresiones, se elimina la norma de [tex]\vec A[/tex] y se desarrolla y simplifica la ecuación resultante:

[tex]30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})[/tex]

[tex]35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})[/tex]

[tex]\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}[/tex]

[tex]30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})[/tex]

[tex]122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}[/tex]

[tex]35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}[/tex]

[tex]\tan \theta_{A} = \frac{35.41}{65.6}[/tex]

[tex]\tan \theta_{A} = 0.540[/tex]

Ahora se determina el ángulo de [tex]\vec A[/tex]:

[tex]\theta_{A} = \tan^{-1} \left(0.540\right)[/tex]

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

[tex]\theta_{A, 1} \approx 28.369^{\circ}[/tex] y [tex]\theta_{A, 2} \approx 208.369^{\circ}[/tex]

Ahora, la magnitud de [tex]\vec A[/tex] es:

[tex]\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}[/tex]

[tex]\| \vec A \| = 6.163\,m[/tex]

A flashed steam geothermal power plant is located where underground hot water is available as saturated liquid at 700 kPa. The well head pressure is 600 kPa. The
flashed steam enters a turbine at 500 kPa and expands to 15 kPa, when it is condensed. The flow rate from the well is 29.6 kg/s. determine the power produced in
kW.

Answers

Answer:

The power produced by the turbine is 74655.936 kW.

Explanation:

A turbine is a device that operates at steady-state. Let suppose that turbine does not have heat interactions with surroundings, as well as changes in potential and kinetic energies are neglictible. Power output can be determined by First Law of Thermodynamics:

[tex]-\dot W_{out} + \dot m \cdot (h_{in}-h_{out}) = 0[/tex]

[tex]\dot W_{out} = \dot m\cdot (h_{in}-h_{out})[/tex]

Let suppose that water enters as saturated vapor and exits as saturated liquid. Specific enthalpies are, respectively:

[tex]h_{in} = 2748.1\,\frac{kJ}{kg}[/tex]

[tex]h_{out} = 225.94\,\frac{kJ}{kg}[/tex]

The power produce by the turbine is:

[tex]\dot W_{in} = \left(29.6\,\frac{kg}{s} \right)\cdot \left(2748.1\,\frac{kJ}{kg} - 225.94\,\frac{kJ}{kg} \right)[/tex]

[tex]\dot W_{in} = 74655.936\,kW[/tex]

A 1000 mm wide steel sheet made of C35 is normalized by cold rolling 10 mm thick
deformed to 5 mm. The rollers, 600 mm in diameter, run at a peripheral speed of 0.12 m/s.
The deformation efficiency is 55%.
Find out:
a) the roller force
b) the roller torque
c) the performance on the pair of rollers.

Answers

Answer:

a. 20.265 MN

b. 0.555 MNm

c. 403.44 KW

Explanation:

Given:-

- The width ( w ) = 1000 mm

- Original thickness ( to ) = 10 mm

- Final thickness ( t ) = 5 mm

- The radius of the rollers ( R ) = 600 mm

- The peripheral speed of the roller ( v ) = 0.12

- Deformation efficiency ( ε ) = 55%

Find:-

a) the roller force ( F )

b) the roller torque ( T )

c) the performance on the pair of rollers. ( P )

Solution:-

- The process of flat rolling entails a pair of compressive forces ( F ) exerted by the rollers on the steel sheet that permanently deforms.

- The permanent deformation of sheet metal is seen as reduced thickness.

- We will assume that the compressive force ( F ) acts normal to the point of contact between rollers and metal sheet.

- The roll force ( F ) is defined as:

                                 [tex]F =L*w*Y_a_v_g[/tex]

Where,

                     L: The projected length of strip under compression

                     Y_avg: The yielding stress of the material = 370 MPa

- The projected length of strip under compression is approximated by the following relation:

                               [tex]L = \sqrt{R*( t_o - t_f )} \\\\L = \sqrt{0.6*( 0.01 - 0.005 )} \\\\L = 0.05477 m[/tex]

- The Roll force ( F ) can be determined as follows:

                            [tex]F = (0.05477)*(1 )*(370*10^6 )\\\\F = 20.265 MN[/tex]

- The roll torque ( T ) is given by the following relation as follows:

                               [tex]T = \frac{L}{2} * F\\\\T = \frac{0.05477}{2} * 20.265\\\\T = 0.555 MNm[/tex]

- The rotational speed of the rollers ( N ) is determined by the following procedure:

                               [tex]f = \frac{v}{2\pi* R} = \frac{0.12}{2*\pi 0.6} = 0.03181818 \frac{rev}{s} \\\\N = f*60 = 1.9090 rpm[/tex]

- The power consumed by the pair of rollers ( P ) is given by:

                              [tex]P = \frac{2\pi * F * L * N}{e*60,000} KW \\\\P = \frac{2\pi * ( 20.265*10^6) * (0.05477) * (1.90909 ) }{60,000*0.55} KW\\\\P = 403.44 KW[/tex]

The strength and stability of tires may be enhanced by heating both sides of the rubber ( 0.14 W/m·K, 6.35 × 10^-8m^2/s) in a steam chamber for which T[infinity]= 200°C. In the heating process, a 20-mm-thick rubber wall (assumed to be untreaded) is taken from an initial temperature of 35°C to a midplane temperature of 170°C. If steam flow over the tire surfaces maintains a convection coefficient of 200 W/m^2·K. How long will it take to achieve the desired midplane temperature?

Answers

Answer:

[tex]\mathbf{t_f = 1436.96 \ sec }[/tex]

Explanation:

Given that :

The strength and stability of tires may be enhanced by heating both sides of the rubber ( 0.14 W/m·K, 6.35 × 10^-8m^2/s)

i.e

k = 0.14 W/mK

∝ = 6.35 × 10⁻⁸ m²/s

L = 0.01 m

[tex]B_1 = \dfrac{hL}{k} \\ \\ B_1 = \dfrac{200*0.01}{0.14} \\ \\ B_1 = 14.2857[/tex]

We cannot use the model of Lumped Capacitance; SO Let assume that Fourier Number [tex]F_o > 0.2[/tex]

⇒  [tex]\dfrac{T_o - T_ \infty }{T_i - T_ \infty} = C_1 exp (- \zeta_i^2 *F_o)[/tex]

From Table 5.1 ; at [tex]B_1[/tex] = 14.2857

[tex]C_1 = 1.265 \\ \\ \zeta_1 = 1.458 \ rad[/tex]

[tex]\dfrac{170-200}{35-200} = 1.265 exp [ - (1.458)^2* \dfrac{ \alpha t_f}{L^2}][/tex]

[tex]In ( \dfrac{0.1818}{1.265}) = \dfrac{-1.458^2*6.35*10^{-8}*t_f}{0.01^2}[/tex]

[tex]-1.9399=-0.001350 *t_f[/tex]

[tex]t_f = \dfrac{-1.9399}{-0.001350}[/tex]

[tex]\mathbf{t_f = 1436.96 \ sec }[/tex]

Initially, a mixing vessel contains 300 kg of orange juice containing 40% solids. Orange concentrate and water are continuously fed into the vessel as illustrated in Figure 2.1. If it’s desired that the orange concentrate be diluted, how long should stirring occur to reduce the solids to 35%. [25] Fig 2.1: Mixing vessel

Answers

Answer:

  forever (no solution)

Explanation:

If the figure you're working with is the one shown below, no amount of mixing will reduce the solid content to 35%.

The vessel contains 40% solids.

The incoming feed is ...

  (100 kg/h)×(60% solids) = 60 kg solids/h

out of a total influx of material of ...

  (100 kg/h +70 kg/h) = 170 kg/h

That means the solids content of the inflow is ...

  (60 kg)/(170 kg) = 0.352941 ≈ 35.3%

The solids content cannot ever be less than 35.3%. The problem has no solution.

_____

We suggest you discuss this question with your teacher to see how they would solve it.

A particle is emitted from a smoke stack with diameter of 0.05 mm. In order to determine how far downstream it travels it is important to find its terminal downward velocity. If it has a density of 1200 kg/m3, its terminal downward velocity (cm) is: (assume the drag coefficient is 24/Re and the volume of a sphere is 4/3 pi R3)

Answers

Answer: downward velocity = 6.9×10^-4 cm/s

Explanation: Given that the

Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m

Where radius r = 2.5 × 10^-5 m

Density = 1200 kg/m^3

Area of a sphere = 4πr^2

A = 4 × π× (2.5 × 10^-5)^2

A = 7.8 × 10^-9 m^2

Volume V = 4/3πr^3

V = 4/3 × π × (2.5 × 10^-5)^3

V = 6.5 × 10^-14 m^3

Since density = mass/ volume

Make mass the subject of formula

Mass = density × volume

Mass = 1200 × 6.5 × 10^-14

Mass M = 7.9 × 10^-11 kg

Using the formula

V = sqrt( 2Mg/ pCA)

Where

g = 9.81 m/s^2

M = mass = 7.9 × 10^-11 kg

p = density = 1200 kg/m3

C = drag coefficient = 24

A = area = 7.8 × 10^-9m^2

V = terminal velocity

Substitute all the parameters into the formula

V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]

V = sqrt[ 1.54 × 10^-9/2.25×10-4]

V = 6.9×10^-6 m/s

V = 6.9 × 10^-4 cm/s

Other Questions
if w = 54 what is the value of x Can anyone help please? Larned Corporation recorded the following transactions for the just completed month. $86,000 in raw materials were purchased on account. $84,000 in raw materials were used in production. Of this amount, $70,000 was for direct materials and the remainder was for indirect materials. Total labor wages of $120,000 were paid in cash. Of this amount, $102,100 was for direct labor and the remainder was for indirect labor. Depreciation of $190,000 was incurred on factory equipment. Required: Record the above transactions in journal entries. Help please There are indications that Jem is growing up and growing away from Scout.TrueFalse Please help me!New technology has allowed us to genetically modify our food. Scientist can now create crops that are pest resistant, drought resistant, faster growing and more nutritious. These consequences would best be described asA)positive, intended consequences.B)negative, intended consequences.C)positive, unintended consequences.D)negative, unintended consequences. what is the rate of change between (29,9) and (33,10)? A scatter plot and a possible line of best fit is shown: Is the line of best fit accurate for the data shown? No, because the line does not touch any points No, because the line should touch every point Yes, because it touches the y-axis Yes, because it passes through the center of the data points How is Argentina ranked among the largest countries of the world? A line in the xy-plane passes through the points (1,-2) And has a slope of 1/3. Which of the following points lies on the line?A) (3,-2)B) (2,-4/3)C) (0,-2)D) (-1,-8/3) What is the mechanical advantage of a pulley with 3 support ropes? A large container of water is sitting on a balance. The weight of the container plus the water is 10 newtons. An object the weight of 7 newtons hanging from a forcemeter is lowered towards the surface of the water . what reading on the force meter would you expect? Researchers are interested in determining whether more women than men prefer the beach to the mountains. In a random sample of 200 women, 45% prefer the beach, whereas in a random sample of 300 men, 52% prefer the beach. What is the 99% confidence interval estimate for the difference between the percentages of women and men who prefer the beach over the mountains? Plz help asap, shdhhshdhshxh g Your savings account earns 1.72% interest. You have $3,000 left over from an internship that you will put into the saving account. There is currently no money in the account :( How many years is it until there is $3,756 in the account? Explain why paying money to the government officials to get water is an undemocratic method.(Point stealers will be reported so better dont do it.) ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions. What is the value of 1 over 2 x+3.4y when x=3 and y = 4? Which of the following tests include 2 components of health-related fitness when tested? a Mile-run. b PACER c Curl-up. d Push-up. e Planks. f Trunk-lift. Piensa en una historia que quieras escribir. Primero, plantea una virtud o un defecto humano que quieras resaltar. ---[recuerda que las fabulas contienen un mensaje morarilizante what is a single word answer to say _I am_ in spanish?