Answer:
sublimation
Explanation:
solid => liquid Melting
liquid => solid freezing
liquid => gas evaporation
gas => liquid condensation
solid => gas sublimation
gas => solid deposition (e.g.; formation of frost), however some scholars will also refer to this process as sublimation.
Which shampoo would be displayed third?
Answer:
Biolage is the answer
Explanation:
Because it's price is third most
What is the name of the compound shown below?
A. 2-pentene
B. 1-propene
C. 2-propene
D. 1-pentene
The name of the compound shown below is 1- pentene. The correct answer is option D.
A compound is a substance made up of two or more different elements chemically bonded together in a fixed ratio.
1-pentene is an unsaturated hydrocarbon with the chemical formula [tex]\rm C_5H_{10}[/tex]. It is an alkene, which means it contains a carbon-carbon double bond.
The structure of 1-pentene is characterized by a chain of five carbon atoms (pentane) with one double bond between the first and second carbon atoms. The double bond causes the molecule to have a planar structure, with all atoms lying in the same plane. The remaining three carbon atoms in the chain are each bonded to two hydrogen atoms.Therefore, option D. 1-pentene is the name of the compound shown.
Learn more about compound here:
https://brainly.com/question/14117795
#SPJ6
Each 5-ml teaspoon of Extra Strength Maalox Plus contains 450 mg of magnesium hydroxide and 500 mg of aluminum hydroxide. How many moles of hydronium ions H3O are neutralized by 1 teaspoon of antacid product?
Answer:
0.0347 moles of hydronium ions
Explanation:
The equation of the neutralization reaction between hydroxide and hydronium ions is given below:
H₃O+ (aq) + OH- (aq) ----> 2 H₂O (l)
From the equation above, 1 mole of hydroxide ions will neutralize one mole hydronium ions.
The moles of hydroxide ions present in 1 teaspoon or 5 mL of antacid product is calculated as follows:
Number of moles = mass / molar mass
Molar mass of Magnesium hydroxide, Mg(OH)₂ = 58 g/mol
Molar mass of aluminium hydroxide, Al(OH)₃ = 78 g/mol
Mass of magnesium hydroxide = 450 g = 0.45 g
Mass of aluminium hydroxide = 500 mg = 0.5 g
Moles of magnesium hydroxide = (0.45/58) moles
Moles of aluminium hydroxide = (0.5/78) moles
Equation of the ionization of magnesium hydroxide and aluminium hydroxide is given below:
Mg(OH)₂ (aq) ----> Mg²+ (aq) + 2 OH- (aq)
Al(OH)₃ (aq) ---> Al³+ (aq) + 3 OH- (aq)
Number of moles of hydroxide ions present in (0.45/58) moles of magnesium hydroxide = 2 × (0.45/58) moles = 0.0155 moles
Number of moles of hydroxide ions present in (0.5/78) moles of aluminium hydroxide = 3 × (0.5/78) moles = 0.0192 moles
Total moles of hydroxide ions = 0.0155 + 0.0192 = 0.0347 moles hydroxide ions
Therefore, 0.0347 moles of hydroxide ions will neutralize 0.0347 moles of hydronium ions.
Write a balanced half-reaction for the oxidation of manganese ion (mn2 ) to solid manganese dioxide (mno2) in acidic aqueous solution. Be sure to add physical state symbols where appropriate.
Answer:
Mn2+(aq) + 2H2O(l) ⇒ MnO2(s) + 4H+(aq) + 2e-
Explanation:
Step 1: Data given
The oxidation number of manganese ion (Mn2+ ) is +2
The oxidation number of manganese dioxide is +(MnO2)4
This means the oxidation number from Mn will go from +2 to +4, since it's increased, this is an oxidation reaction
Mn2+(aq) ⇒ MnO2(s)
We have to balance both sides. Mn is already the same. But on the right side we have O atoms. T obalance both sides we have to add O atoms to the left side. This by adding 2x H2O
Mn2+(aq) + 2H2O(l) ⇒ MnO2(s)
Now the amount of O atoms is balanced, but we have H- atoms at the left side. To balance we have to add 4 H atoms to the right side
Mn2+(aq) + 2H2O(l) ⇒ MnO2(s) + 4H+(aq)
Now the amount of atoms is balanced at both sides. We also have to check if the charge on both sides is the same.
Since the left side has a charge of +2, and right has a charge of +4, we have to add 2 electrons to balance this.
Mn2+(aq) + 2H2O(l) ⇒ MnO2(s) + 4H+(aq) + 2e-
PLEASE HELP
iv. A total of 132.33g C3H8 is burned in 384.00 g O2. Use the following questions to determine the amounts of products formed.
• Determine if one of the reactants is a limiting reagent.
• How many grams of CO2 and H2O will be produced? (2 points)
b. If the furnace is not properly adjusted, the products of combustion can include other gases, such as CO and unburned hydrocarbons. If only 269.34 g of CO2 were formed in the above reaction, what would the percent yield be? (2 points)
Answer:
See explanation
Explanation:
The equation of the reaction is;
C3H8 + 5O2 ----> 3CO2 + 4H2O
Number of moles of C3H8 = 132.33g/44g/mol = 3 moles
1 mole of C3H8 yields 3 moles of CO2
3 moles of C3H8 yields 3 × 3/1 = 9 moles of CO2
Number of moles of oxygen = 384.00 g/32 g/mol = 12 moles
5 moles of oxygen yields 3 moles of CO2
12 moles of oxygen yields 12 × 3/5 = 7.2 moles of CO2
Hence C3H8 is the limiting reactant.
Mass of CO2 produced = 9 moles of CO2 × 44 g/mol = 396 g of CO2
1 moles of C3H8 yields 4 moles of water
3 moles of C3H8 yields 3 × 4/1 = 12 moles of water
Mass of water = 12 moles of water × 18 g/mol = 216 g of water
b) Actual yield = 269.34 g
Theoretical yield = 396 g
% yield = actual yield/theoretical yield × 100/1
% yield = 269.34 g /396 g × 100
% yield = 68%
A 25.00 gram sample of an unknown metal initially at 99.0 degrees Celcius is added to 50.00 grams of water initially at 10.55 degrees Celcius. The final temperature of the system is 20.15 degrees Celcius. Calculate the specific heat of the metal. (The specific heat of water is 4.184 J/g*C).
Answer:
1.0188 J/g*C
Explanation:
Using the formula; Q = m × c × ∆T
Q(water) = -Q(metal)
m × c × ∆T (water) = -{m × c × ∆T (metal)}
According to this question,
mass of metal = 25g
initial temp of metal = 99°C
mass of water = 50g
initial temp of water = 10.55°C
final temperature of the system = 20.15°C
c of water = 4.184 J/g*C
50 × 4.184 × (20.15 - 10.55) = 25 × c × (20.15 - 99)
209.2 × 9.6 = 25c × -78.85
2008.32 = -1971.25c
c = 2008.32 ÷ 1971.25
c of metal = 1.0188 J/g*C
what vent system nitrogen vessel used to?
it's helpful
you can try this answer
Which technique would be best for separating sand and water?
A. filtration
B. distillation
C. chromatography
D. evaporation
Answer:
A. filtration
Hope it helps
The half life for the radioactive decay of carbon- to nitrogen- is years. Suppose nuclear chemical analysis shows that there is of nitrogen- for every of carbon- in a certain sample of rock. Calculate the age of the rock. Round your answer to significant digits. g
Answer:
Age of rock = 6.12 × 10³ years
Note: The question is incomplete.A similar but complete question is given below.
The half-life for the radioactive decay of carbon-14 to nitrogen-14 is 5.73 x 10^3 years. Suppose nuclear chemical analysis shows that there is 0.523mmol of nitrogen-14 for every 1.000 mmol of carbon-14 in a certain sample of rock.
Calculate the age of the rock. Round your answer to 2 significant digits.
Explanation:
The half-life of a radioactive material is the time taken for half the atoms in the atomic nucleus of a material to disintegrate.
The half-life for the radioactive decay of carbon-14 to nitrogen-14 is given as 5.73 x 10³ years. This means that given 1 mole of carbon-14 is present initially, after one half-life, 0.5 moles of carbon-14 would remain.
Number of millimoles of carbon-14 remaining = 1 - 0.523 = 0.477 mmol
Number of half-lives that the carbon-14 has undergone is determined as follows:
Amount remaining = (1/2)ⁿ
where nnis number of half-lives
0.5 mmol = one half-life
0.5 = (1/2)¹
O.477 = (1/2)ⁿ = (0.5)ⁿ
㏒₀.₅(0.477) = n
n = ㏒(0.477)/㏒(0.5)
n = 1.067938829
Age of the rock = number of half-lives × half-life
Age of rock = 1.067938829 × 5.73 × 10³ years
Age of rock = 6.12 × 10³ years
What is represented by a straight line on a graph?
o the sum of the independent and dependent variables
O only the independent variable
O only the dependent variable
o the relationship between independent and dependent variable
1 2
3
4
5
Answer:
the relationship between independent and dependent variable
Explanation:
A straight line or linear graph is one of the ways to represent a given data. It shows the relationship between two given set of data; one called the independent variable is plotted on the x-axis (horizontal) while the other called the dependent variable is plotted on the y-axis (vertical).
The straighter the line is, the stronger the relationship between the two variables and vice versa. Hence, the straight line in the graph represents the relationship between independent and dependent variable.
What effect does the anion of an ionic compound have on the appearance of the solution?
A. The anion affects the intensity of the color more than the color of the solution.
B. The anion affects the color of the solution more than the intensity of the color
C. The anion does not affect the color or color intensity of the solution
D. The anion only affects the intensity of the color in a solution.
Answer: B. The anion affects the color of the solution more than the intensity of the color.
Explanation:
An ionic bond is gotten when an electron is transferred from a metal atom to a non-metal one. It should be noted that the ionic bonds simply has an anion and a cation.
An anion is formed when a valence election is gained by a non metal while a cation is formed when the metal ion misplaces a valence electron.
The effect of the anion of an ionic compound on the appearance of the solution is that the anion affects the color of the solution more than the intensity of the color.
The anions affect the color of the solution more than the intensity of the color.
How do anions affect the color of the solution?Anions are the molecules or atoms that have one or more extra electrons in the valence cell.
When the number of electrons is increased or decreased in the solute molecule it completely change the color of the solution.
For example - Yellow chromate and orange dichromate
Therefore, the anions affect the color of the solution more than the intensity of the color.
Learn more about anion:
https://brainly.com/question/24937049
name a factor tht affects the value of electron affinity
Answer:
Atomic sizeNuclear chargesymmetry of the electronic configurationHow can beta particles be dangerous to living cells?
A. They move fast and penetrate the skin.
B. They are very high in energy and can travel through most
materials.
C. They move slowly but are very large.
D. They are very low in energy but remain in the body for a long time.
What is the volume of the fluid in the graduated cylinder measured to the correct degree of precision?
37.22 mL
38.05 mL
37.0 ml
37.8 ml
Answer:
37.0. gsgggsgsghddhhdd
Consider the constitutional isomers 2-methylbut-1-ene, 2-methylbut-2-ene, and 3-methylbut-1-ene. When each of these alkenes is subjected to catalytic hydrogenation (H2, Pt), a single product results. Which of the following best describes the structural relationship among these products?
a. the product are cis-trans isomers.
b. the product are identical.
c. the product are constitutional isomers.
d. the product are enantiomers.
e. the product are diastereomers.
Answer:
Explanation:
I am almost sure that the products are identical.
Rank the following atoms in order of decreasing first ionization energies (i.e., highest to lowest): Li, Be, Ba, F.
a. Ba > Li > Be > F
b. F > Be > Li > Ba
c. Li > Be > F > Ba
d. F > Be > Ba > Li
e. Ba > F > Be > Li
Answer:
The order is:
F >Be >Li >Ba
Explanation:
Electrons are held in atoms by their attraction to the nucleus which means that to remove an electron from the atom energy is needed.
The ionization energy is the minimum energy necessary to remove an electron from an atom in the gas phase and ground state, the electron removed being the outermost, that is, the furthest from the nucleus. The further away the electron is from the nucleus, the easier it is to remove it, that is, the less energy is needed.
By increasing the atomic number of the elements of the same group, the nuclear attraction on the outermost electron decreases, since the atomic radius increases. Then the ionization energy decreases. In other words, in a group it decreases from top to bottom because the size of the atom increases and it is easier to remove an external electron.
By increasing the atomic number of the elements of the same period, the nuclear attraction on the outermost electron increases, since the atomic radius decreases. Therefore, in a period, as the atomic number increases, the ionization energy increases. In summary, in a period it increases from left to right as the effective nuclear charge increases and it increases thanks to the decrease in the size of the atom.
Taking these considerations into account, the order is:
F >Be >Li >Ba
3 molecules NaOH determine the amount of grams
Answer:
In three mocelus 0.0001 gram.
What volume of carbon dioxide is required for inflating the Ziploc bag prototype ?
Answer:
The front passenger airbag has a volume of around 140 l and fully inflates in around 35 ms. The process is similar for side airbags (thorax airbags).
CHEM 100Worksheet 6Summer2021Name:____________________(5pts each, 10 pts total) Complete the following multistep synthesis problems. Show all reagents and intermediates for full credit. You do not need to show the mechanisms.
Where are the questions?
Please help answering 11)
Answer:
the answer is C
Explanation:
Using the following equation for the combustion of octane calculate the heat associated with the formation of 100.0 g of carbon dioxide. The molar mass of octane is 114.33 g/mole.
2C8H18 + 25O2 → 16 CO2 + 18 H2O
ΔH°rxn = -11018 kJ
Answer:
The right solution is "-602.69 KJ heat".
Explanation:
According to the question,
The 100.0 g of carbon dioxide:
= [tex]\frac{100.0 \ g}{114.33\ g/mole}[/tex]
= [tex]0.8747 \ moles[/tex]
We know that 16 moles of [tex]CO_2[/tex] formation associates with -11018 kJ of heat, then
0.8747 moles [tex]CO_2[/tex] formation associates with,
= [tex]-\frac{0.8747}{16}\times 11018 \ KJ \ of \ heat[/tex]
= [tex]-0.0547\times 11018[/tex]
= [tex]-602.69 \ KJ \ heat[/tex]
What are fires classified by?
Answer:
A fire class is a system of categorising fire with regard to the type of material and fuel for combustion. Class letters are often assigned to the different types of fire, but these differ between territories. There are separate standards for the United States, Europe, and Australia
How many moles of Al are needed to react exactly with 10.00 moles of Fe2O3 according to the following
equation?
Fe2O3 + 2 Al → Al2O3 + 2Fe
A) 15.0 moles
1
B) 20.0 moles
C) 30.0 moles
D) 60.0 moles
E) 35.0 moles
Answer:
Answer is B) 20.0 moles
Explanation:
From the equation,
1 mole of Fe2O3 = 2 moles of Al
therefore 10.0 moles of Fe2O3 = 10×2
= 20.0 moles.
Consider the chemical reaction: N2 3H2 yields 2NH3. If the concentration of the reactant H2 was increased from 1.0 x 10-2 M to 2.5 x 10-1 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.
In this equilibrium, the chemical system will shift to the right in order to produce more NH₃.
The equilibrium constant of a reaction is defined as:
"The ratio between equilibrium concentrations of products powered to their reaction quotient and equilibrium concentration of reactants powered to thier reaction quotient".
The reaction quotient, Q, has the same algebraic expressions but use the actual concentrations of reactants.
To solve this question we need this additional information:
For this reaction, K = 6.0x10⁻² and the initial concentrations of the reactants are:
[N₂] = 4.0M; [NH₃] = 1.0x10⁻⁴M and [H₂] = 1.0x10⁻²M
Thus, for the reaction:
N₂ + 3H₂ ⇄ 2NH₃
The equilibrium constant, K, of this reaction, is defined as:
[tex]K = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where [] are concentrations in equilibrium.
And Q, is:
[tex]Q = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where actual concentrations are:
[NH₃] = 1.0x10⁻⁴M
[N₂] = 4.0M
[H₂] = 2.5x10⁻¹M
Replacing:
Q = 1.6x10⁻⁷
As Q < K,
The chemical system will shift to the right in order to produce more NH₃
Learn more about chemical equililbrium in:
https://brainly.com/question/24301138
China is the leading producer of
Answer:
Production of some products is highly concentrated in a few countries, China, the leading producer of wheat and ramie in 2013, produces 6% of the world's ramie fiber but only 17% of the world's wheat.
Which of the following have only a -C-O-C- functional group?
Answer:
B) ethers
Explanation:
The functional group of an organic compound defines its specificity. The functional group is responsible for the chemical behavior of an organic compound. For example, alkenes are known to have a carbon-carbon double bond (C=C) functional group.
Likewise, organic compounds known as ETHERS are known to possess an ethoxy functional group i.e. oxygen atom bonded to two alkyl groups (R- OR; where R is an alkyl group). Members of ether functional group includes dimethyl ether (CH3-O-CH3), diethyl ether (C2H5-O-C2H5).
The half life for the decay of carbon-14 is 5.73 times 10^3 years.
Suppose the activity due to the radioactive decay of the carbon-14 in a tiny sample of an artifact made of wood from an archeological dig is measured to be 77.The activity in a similar-sized sample of fresh wood is measured to be 85.Calculate the age of the artifact. Round your answer to 2 significant digits.
Answer:
790 years
Explanation:
Given that;
0.693/t1/2 = 2.303/t log [A]o/[A]
So;
t1/2 =half life of carbon-14
t= age of the sample
[A]o= activity of the living sampoke
[A] = activity at time t
0.693/5.73 ×10^3 = 2.303/t log 85/77
1.21 × 10^-4 = 2.303/t log 1.1
1.21 × 10^-4 = 0.0953/t
t= 0.0953/1.21 × 10^-4
t= 790 years (to 2sf)
Valproic acid, used to treat seizures and bipolar disorder, is composed of C, H, and O. A 0.165-g sample is combusted to produce 0.166 g of water and 0.403 g of carbon dioxide. What is the empirical formula for valproic acid
Answer:
The empirical formula is C4H8O
Explanation:
Step 1: Data given
Valproic acid is composed of C, H, and O
Mass of the sample = 0.165 grams
Mass of water = 0.166 grams
Mass of CO2 = 0.403 grams
Molar mass of water ( H2O) = 18.02 g/mol
Molar mass of CO2 = 44.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Atomic mass H = 1.01 g/mol (H2 = 2.02 g/mol)
Step 2: The equation
CxHyOz + O2 → CO2 + H2O
Step 3: Calculate the number of carbon in the sample
The carbon comes from CO2
Mass C = (12.01 g/mol/44.01 g/mol) * 0.403 grams
Mass C = 0.110 grams
Step 4: Calculate mass of hydrogen in the sample
The hydrogen comes from H2O
Mass H = (2.02/18.02) * 0.166 grams
MAss H = 0.0186 grams
Step 5: Calculate mass of O
The mass of O in the sample = Mass of sample - mass of H - mass of C
The mass of O = 0.165 grams - 0.110 grams - 0.0186 grams
The mass of O = 0.0364 grams
Step 6: Calculate moles
Moles C = 0.110 grams / 12.01 g/mol = 0.00916 moles
Moles H = 0.0186 / 1.01 = 0.0184 moles
Moles O = 0.0364/16.0 = 0.00228 moles
Step 7: Calculate empirical formula
We divide by the smallest amount of moles
C: 0.00916/ 0.00228 = 4
H: 0.0184/0.00228 = 8
O: 0.00228/0.00228 = 1
The empirical formula is C4H8O
The element Co exists in two oxidation states, Co(II) and Co(III), and the ions form many complexes. The rate at which one of the complexes of Co(III) was reduced by Fe(II) in water was measured. Determine the activation energy of the reaction from the following data:
T(K) K(s^-1)
293 0.054
298 0.100
We measured the Fe(II) reduction of one of the Co(III) complexes by water at a rate of about 0.545 kJ/mol (to three significant figures).
How is activation energy determined?Calculating a Reaction's Activation Energy A reaction's rate is influenced by the temperature at which it is carried out. The molecules travel more quickly and clash more frequently as the temperature rises. Moreover, the molecules contain greater kinetic energy.
We can use the Arrhenius equation to calculate the reaction's activation energy:
k = A × exp(-Ea/RT)
When the activation energy Ea, the rate constant k, the gas constant R, and the temperature T in Kelvin are all present.
Finding the natural logarithm of the equation's two sides results in:
ln(k) = ln(A) - (Ea/RT)
This equation can be rearranged to take a linear form:
ln(k) = (-Ea/R) × (1/T) + ln(A)
y = mx + b, where (1/T) is x, (-Ea/R) is the slope, and ln(A) is the y-intercept, has the form of a linear equation.
We can get the slope of the line using the given data:
slope = (-Ea/R) = (ln(k2/k1)) / (1/T2 - 1/T1)
where the rate constants for temperatures T1 and T2, respectively, are k1 and k2.
substituting the specified values:
k1 = 0.054s⁻¹ at 293 K
k2 = 0.100s⁻¹ at 298 K
T1 = 293 K
T2 = 298 K
slope = (-Ea/R)
= (ln(0.100/0.054)) / (1/298 - 1/293)
= 65.5 kJ/mol
Therefore, the activation energy of the reaction is:
Ea = slope * R = 65.5 kJ/mol × 8.314 J/mol-K = 545 J/mol
To know more about molecules visit:-
https://brainly.com/question/15532626
#SPJ1
Not following hazardous material safety policies and procedures can result in which of
the following? (Select all that apply.)
a. Serious illnesses
b. Injury
c. Death
d. HIPAA violation
Answer:
A, B, C and D
Explanation:
It can result for all of the choices mentioned.
Not following safety and procedure for handling hazardous material results in illness, death, injury, and HIPAA violation. Thus, all options are correct.
The hazardous material safety policy and measures are the standards set by HIPAA for the safety and precautionary measures that have been followed for reducing personal risk.
The hazardous materials have been chemicals, gases, flammables, and explosives. The inappropriate handling and not following the standard procedure results in illness, injury, death, and HIPAA violation. Thus, all the options are correct.
For more information about the hazardous material, refer to the link:
https://brainly.com/question/3520802