What is the frequency of a wavelength

Answers

Answer 1

the longer the wavelength, lower the frequency. In the same manner, shorter the wavelength, higher will be the frequency.

Wavelength is inversely proportional to frequency.

Answer 2
In an equation, wavelength is represented by the Greek letter lambda (λ). Depending on the type of wave, wavelength can be measured in meters, centimeters, or nanometers (1 m = 109 nm). The frequency, represented by the Greek letter nu (ν), is the number of waves that pass a certain point in a specified amount of time.

Hope this helps :))

Related Questions

what are the two main types of sound like soundwave​

Answers

Answer:

acoustic energy and mechanical energy

Explanation:

each type of sounds has to be tackled in their own way.

You have a 1 W light bulb in your lab. It puts out light of only 1 frequency. The wavelength of this light is 500nm. you set up a detector with a surface area of 1 square centimeter facing the light source at a distance of 100m.

Required:
a. Find the number of photons hitting the detector every second.
b. What is the maximum E field of the E M wave hitting the detector?
c. What is the maximum value of the B field of this E M wave?
d. How far away would you have to place the detector to only receive 1 photon per second from the light bulb?

Answers

Answer:

a)   # _photon = 2.5 10¹⁸ photons / s,   b) E = 10⁻² N / C,  c)     B = 3 10⁻¹¹ T

d)  r=  2 10⁹ m

Explanation:

a) Let's solve this exercise in part, let's start by finding the energy of each photon using the Planck relation

          E₀ = h f

          c = λ f

          E₀ = h c /λ

          E₀ = 6.63 10⁻³³⁴   3 10⁸/500 10⁻⁹

          E₀ = 3.978 10⁻⁻¹⁹ J

Let's use a direct ratio rule to find the number of photons

         #_foton = E / Eo

         #_fototn = 1 / 3.978 10⁻¹⁹

         # _photon = 2.5 10¹⁸ photons / s

b) The intensity received by the detector is related to the electric field

          I = E²

Let's look for the intensity that the detector receives, suppose that the emission is shapeless throughout the space

          I = P / A

          P = I A

Let's use index 1 for the point on the bulb and index 2 for the point on the detector.

The area of ​​a sphere is

          A = 4π r²

         P = I₁ A₁ = I₂ A₂

         I₁ r₁² = I₂ r₂²

         I₂ = I₁  r₁²/r₂²

         I₂ = I₁    1 / 100²

         I₂ = I₁ 10⁻⁴

we must know the intensity at the output of the bulb suppose that I₁ = 1 J

          I₂ = 10⁻⁴ J

let's look for the electric field

         E =√I

         E = √10⁻⁴

         E = 10⁻² N / C

c) for the calculation of the magnetic field we use that the field is in phase

               E / B = c

               B = E / c

               B = 10⁻² / 3 10⁸

               B = 3 10⁻¹¹ T

d) Let's use a direct proportions rule if we fear 2.5 10¹⁸ photons in an area  A = 4π R² where R = 100 m how many photons are there in the area of ​​the detector r = 1 cm,   A’= 10⁻⁴ m²

             #_photons = 2.5 10¹⁸ A_detector / A_sphere

             #_photons = 2.5 1018 10-4 / 4π 10⁴

             #_photons = 2 10⁹ photons in the detector area

for the number of photons to decrease to 1, the radius of the sphere must be 2 10⁹ m

As the speed of a particle approaches the speed of light, the momentum of the particle Group of answer choices approaches zero. decreases. approaches infinity. remains the same. increases.

Answers

Answer:

approaches infinity

Explanation:

There are two momentums, the classical momentum which is equal to the product of mass and velocity, and the relativistic momentum, the one we should look at when we work with high speeds, and this happens because massive objects have a speed limit, in this case, we are approaching the speed of light, so we need to work with the relativistic momentum instead of the classical momentum.

The relativistic momentum can be written as:

[tex]p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]

where

u = speed of the object relative to the observer, in this case we have that u tends to c, the speed of light.

m = mass of the object

c = speed of light.

So, as u tends to c, we will have:

[tex]\lim_{u \to c} p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]

Notice that when u tends to c, the denominator on the first term tends to zero, thus, the relativistic momentum of the object will tend to infinity.

Then the correct option is infinity, as the particle speed approaches the speed of light, the relativistic momentum of the particle tends to infinity.

17- How much work is needed for a climber in order to climb 45 m height, where his weight is 70 kg. also, calculate the power required to climb the height in 30 minutes ? g= 9,8 m.sec

Answers

Answer:

Work Done= 3150J

Power= 1.75W

Explanation:

Work Done= Force x the distance travelled in the direction of the force (W= f x d)

Weight is a force, i think the qn. stated it wrongly, it should be 70N not 70kg.

Work Done= 70 x 45

=3150J

Power= Work Done/Time

=3150/(30x60)

*convert minutes to seconds since the S.I. unit of Power is joules/seconds(J/s) or watts(W)

=1.75W

friction always opposes the _____​

Answers

Answer:

Friction always opposes the motion

I HOPE ITS RIGHT IF NOT THEN SORRY

HAVE A GREAT DAY :)

Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect. If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be

Answers

The question is incomplete, the complete question is;

Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect.

Part A If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be

K/2.

K.

2K.

greater than 2K.

Answer:

2K

Explanation:

Given that the kinetic energy of photo electrons is given by;

K= E -Wo

Where;

K = kinetic energy

E= energy of incident photon

Wo = work function

But;

E= hf

Wo = fo

h= Plank's constant

f= frequency of incident photon

fo= Threshold frequency

So:

K= hf - hfo

Where the frequency of incident light is doubled;

K= 2hf - hfo

Hence, maximum kinetic energy of the emitted electrons in this case will be 2K

A parallel-plate capacitor consists of two plates, each with an area of 29 cm2cm2 separated by 3.0 mmmm. The charge on the capacitor is 7.8 nCnC . A proton is released from rest next to the positive plate. Part A How long does it take for the proton to reach the negative plate

Answers

Answer:

   t = 2.09 10⁻³ s

Explanation:

We must solve this problem in parts, first we look for the acceleration of the electron and then the time to travel the distance

let's start with Newton's second law

        ∑ F = m a

the force is electric

        F = q E

         

we substitute

        q E = m a

        a = [tex]\frac{q}{m} \ E[/tex]

        a = [tex]\frac{1.6 \ 10^{-19}}{ 9.1 \ 10^{-31} } \ 7.8 \ 10^{-9}[/tex]

        a = 1.37 10³ m / s²

now we can use kinematics

        x = v₀ t + ½ a t²

indicate that rest starts v₀ = 0

        x = 0 + ½ a t²

        t = [tex]\sqrt{\frac{2x}{a} }[/tex]

        t = [tex]\sqrt{\frac {2 \ 3 \ 10^{-3}}{ 1.37 \ 10^3} }[/tex]

        t = 2.09 10⁻³ s

An object undergoing simple harmonic motion takes 0.40 s to travel from one point of zero velocity to the next such point. The distance between those points is 50 cm. Calculate (a) the period, (b) the frequency, and (c) the amplitude of the motion.

Answers

Answer:

a)  [tex]P=0.80[/tex]

b)  [tex]1.25Hz[/tex]

c)  [tex]A=25cm[/tex]

Explanation:

From the question we are told that:

Travel Time [tex]T=0.40s[/tex]

Distance [tex]d=50cm[/tex]

a)

Period

Time taken to complete one oscillation

Therefore

[tex]P=2*T\\\\P=2*0.40[/tex]

[tex]P=0.80[/tex]

b)

Frequency is

[tex]F=\frac{1}{T}\\\\F=\frac{1}{0.80}[/tex]

[tex]1.25Hz[/tex]

c)

Amplitude:the distance between the mean and extreme position

[tex]A=\frac{50}{2}[/tex]

[tex]A=25cm[/tex]

Why is oiling done time and again in a sewing machine?

Answers

Answer:

to prevent friction on the surfaces

Answer:

Explanation:

Oiling reduces friction between parts with relative motion between them.

Repeated oiling is needed as the film of oil reducing the friction becomes thinner with time as some of the oil gets pushed off of the areas of motion where it can no longer be useful.

Oil also becomes oxidized which reduces the oil's ability to decrease friction.

Oil can also be fouled by dirt, lint or other material. This added material becomes coated in oil and typically gets sequestered away from the moving parts reducing the oil available for lubrication purposes.

a cheetah running at a velocity of 18m/s accelerates at 1m/s² for 5sec what is the final velocity of the cheetah​

Answers

v = u + at
v=18+1x5
v=18+5
v=23m/s

If a car drives 10 mph South, this is an example of a:
A. Displacement
B. Velocity
C. Speed
D. Distance

Answers

Answer:

杰杰伊杜杜杜伊格富尔杰迪耶赫分离福音

Explanation:

莱德利 · 赫耶尔伊 3uritievrirjrirhruebwkwieheoo2hfjcbvi3hd

Answer:

B velocity

Explanation:

A planet of mass m = 4.25 x 1024 kg orbits a star of mass M = 6.75 x 1029 kg in a circular path. The radius of the orbits R = 8.85 x 107 km. What is the orbital period Tplanet of the planet in Earth days? ​

Answers

285.3 days

Explanation:

The centripetal force [tex]F_c[/tex] experienced by the planet is the same as the gravitational force [tex]F_G[/tex] so we can write

[tex]F_c = F_G[/tex]

or

[tex]m\dfrac{v^2}{R} = G\dfrac{mM}{R^2}[/tex]

where M is the mass of the star and R is the orbital radius around the star. We know that

[tex]v = \dfrac{C}{T} = \dfrac{2\pi R}{T}[/tex]

where C is the orbital circumference and T is orbital period. We can then write

[tex]\dfrac{4\pi^2R}{T^2} = G\dfrac{M}{R^2}[/tex]

Isolating [tex]T^2[/tex], we get

[tex]T^2 = \dfrac{4\pi^2R^3}{GM}[/tex]

Taking the square root of the expression above, we get

[tex]T = 2\pi \sqrt{\dfrac{R^3}{GM}}[/tex]

which turns out to be [tex]T = 2.47×10^7\:\text{s}[/tex]. We can convert this into earth days as

[tex]T = 2.47×10^7\:\text{s}×\dfrac{1\:\text{hr}}{3600\:\text{s}}×\dfrac{1\:\text{day}}{24\:\text{hr}}[/tex]

[tex]\:\:\:\:\:= 285.3\:\text{days}[/tex]

A uniform electric field of strength E points to the right. An electron is fired with a velocity v0 to the right and travels a distance d before coming to a stop. An second electron is then fired upwards through the same field at a velocity of v0. After the electron moving vertical has traveled vertically upwards a distance d, how far will it have moved horizontally?

Answers

Answer:

[tex]D_l=d[/tex]

Explanation:

From the question we are told that:

The Electric field of strength direction =Right

The Velocity of The First Electron=V_0

The Velocity of The Second Electron=V_0

Therefore

[tex]V_{e1}=V_{e2}[/tex]

Generally, the equation for the Horizontal Displacement of electron is mathematically given by

[tex]D=\frac{at^2}{2}[/tex]

Where

Acceleration is given as

[tex]a=\frac{V_o}{2d}[/tex]

And

Time

[tex]T=\frac{d}{v_0}[/tex]

Therefore horizontal displacement towards the left is

[tex]D_l=\frac{(\frac{V_o}{2d})(\frac{d}{v_0})^2}{2}[/tex]

[tex]D_l=d[/tex]

An observer on Earth sees Planet X to be stationary and also sees a rocket traveling toward Planet X at 0.5c. The rocket emits a pulse of light that travels outward in all directions. According to an observer on Planet X, how fast is the light pulse traveling toward them?
a) 2c/3
b) c/2
c) 2c/3
d) 5c/6
e) c

Answers

(E) c

Explanation:

The speed of light is always equal to c regardless of the relative motion of the light source.

System A consists of a mass m attached to a spring with a force constant k; system B has a mass 2m attached to a spring with a force constant k; system C has a mass 3m attached to a spring with a force constant 6k; and system D has a mass m attached to a spring with a force constant 4k. Rank these systems in order of decreasing period of oscillation.

Answers

Answer:

    T₂ > T₁ > T₃ >T₄

Explanation:

In a simple harmonic motion the angular velocity is

         w = [tex]\sqrt{\frac{k}{m} }[/tex]

angular velocity and period are related

         w = 2π / T

we substitute

         T = [tex]2 \pi \ \sqrt{\frac{m}{k} }[/tex]

let's find the period for each case

a) mass m

   spring constant k

          T₁ = 2π [tex]\sqrt{\frac{m}{k} }[/tex]

           

b) mass 2m

   spring constant k

          T₂ = 2π [tex]\sqrt{\frac{2m}{k} }[/tex]

          T₂ = T₁ √2

          T₂ = T₁ 1.41

c) masses 3m

   spring constant 6k

          T₃ = 2π [tex]\sqrt{\frac{3m}{6k} }[/tex]

          T₃ = 2π [tex]\sqrt{\frac{m}{k} } \ \sqrt{0.5}[/tex]

          T₃ = T₁ 0.707

d) mass m

    spring constant 4k

          T₄ = 2π [tex]\sqrt{ \frac{m}{4k} }[/tex]

          T₄ = 2π [tex]\sqrt{\frac{m}{k} } \ \sqrt{0.25}[/tex]

          T₄ = T₁ 0.5

now let's order the periods in decreasing order

           T₂ > T₁ > T₃ >T₄

calculate the force on an object with mass of 50kg and gravity of 10​

Answers

Answer: 500 N

Explanation:

The formula to find the force exerted by a mass, we may use F = mg, where g, the gravity, and a, the acceleration, can be interchangeable in the formula.

1) F = 50 x 10
2) F = 500 N

Hope this helps, brainliest would be appreciated :)

Q.3. The equivalent resistance across AB is:
(a)1
(c)2
(b)3
(d)4

Answers

Answer:

1 ohm

Explanation:

First of all, the equivalent resistance for two resistors (r₁ and r₂) in parallel is given by:

1 / Eq = (1 / r₁) + (1 / r₂)

The equivalent resistance for resistance for two resistors (r₁ and r₂) in series is given by:

Eq = r₁ + r₂

Hence as we can see from the circuit diagram, 2Ω // 2Ω, and 2Ω // 2Ω, hence:

1/E₁ = 1/2 + 1/2

1/E₁ = 1

E₁ = 1Ω

1/E₂ = 1/2 + 1/2

1/E₂ = 1

E₂ = 1Ω

This then leads to E₁ being in series with E₂, hence the equivalent resistance (E₃) of E₁ and E₂ is:

E₃ = E₁ + E₂ = 1 + 1 = 2Ω

The equivalent resistance (Eq) across AB is the parallel combination of E₃ and the 2Ω resistor, therefore:

1/Eq = 1/E₃ + 1/2

1/Eq = 1/2 + 1/2

1/Eq = 1

Eq = 1Ω

A 2000 kg truck has put its front bumper against the rear bumper of a 2500 kg SUV to give it a push. With the engine at full power and good tires on good pavement, the maximum forward force on the truck is 18,000 N.
What is the maximum possible acceleration the truck can give the SUV?
At this acceleration, what is the force of the SUV's bumper on the truck's bumper?

Answers

Answer:

The net magnitude of the force of the SUV's bumper on the truck's bumper is 9120 N.

Explanation:

Concepts and reason

The concept required to solve this problem is Newton’s second law of motion.

Initially, write an expression for the force according to the Newton’s second law of motion. Later, rearrange the expression for the acceleration. Finally, substitute the value of the acceleration obtained to find the new force.

Fundamentals

According to the Newton’s second law of motion, the net force is equal to the product of the mass and the acceleration of an object. The expression for the Newton’s second law of motion is as follows:

F = maF=ma

Here, m is mass and a is the acceleration.

(a)

Rearrange the equation F = maF=ma for a.

a = \frac{F}{m}a=  

m

F

 

Substitute 18,000 N for F and \left( {2300{\rm{ kg + 2400 kg}}} \right)(2300kg+2400kg) for m in the equation a = \frac{F}{m}a=  

m

F

 .

\begin{array}{c}\\a = \frac{{18,000{\rm{ N}}}}{{\left( {2300{\rm{ kg + 2400 kg}}} \right)}}\\\\ = \frac{{18,000{\rm{ N}}}}{{\left( {4700{\rm{ kg}}} \right)}}\\\\ = 3.83{\rm{ m/}}{{\rm{s}}^2}\\\end{array}  

a=  

(2300kg+2400kg)

18,000N

 

=  

(4700kg)

18,000N

 

=3.83m/s  

2

 

 

(b)

Substitute 3.83{\rm{ m/}}{{\rm{s}}^2}3.83m/s  

2

 for a and 2400 kg for m in the equation F = maF=ma .

\begin{array}{c}\\F = \left( {2400{\rm{ kg}}} \right)\left( {3.83{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 9120{\rm{ N}}\\\end{array}  

F=(2400kg)(3.83m/s  

2

)

=9120N

 

Ans: Part a

The maximum possible acceleration the truck can give the SUV is 3.83{\rm{ m/}}{{\rm{s}}^2}3.83m/s  

2

 .

Part b

The net magnitude of the force of the SUV's bumper on the truck's bumper is 9120 N.

The maximum possible acceleration the truck can give the SUV is equal to 4 m/s².

The force of the SUV's bumper on the truck's bumper is 10000N

What is acceleration?

Acceleration of an object can be described as as the change in the velocity of an object w.r.t. time. The acceleration is a vector quantity, contains both magnitude and direction. Acceleration is the second derivative of position w.r.t. time and the first derivative of velocity w.r.t. time.

According to Newton's second law of motion, the force is equal to the product of acceleration and mass of an object.

F = ma

And, a =  F/m

Given, the mass of the ruck , m = 2000 Kg

The mass of the SUV, M = 2500 Kg

The total mass of the both = 2000 + 2500 = 4500 Kg

The maximum force on the trick , F = 18000 N

The maximum acceleration of the truck can give the SUV:

[tex]a_{max} = \frac{F_{max}}{m+M}[/tex]

a = 18000/4500

a = 4 m/s²

The force of the SUV's bumper on the truck's bumper will be:

[tex]F_{max} -f= ma_{max}[/tex]

[tex]f= 18000-2000\times 4[/tex]

[tex]f =10000N[/tex]

Learn more about acceleration, here:

brainly.com/question/3046924

#SPJ5

A resistor is submerged in an insulated container of water. A voltage of 12 V is applied to the resistor resulting in a current of 1.2 A. If this voltage and current are maintained for 5 minutes, how much electrical energy is dissipated by the resistor

Answers

Explanation:

Given:

[tex]\Delta t = 5\:\text{min} = 300\:\text{s}[/tex]

[tex]V = 12 V[/tex]

[tex]I = 1.2 A[/tex]

Recall that power P is given by

[tex]P = VI[/tex]

so the amount of energy dissipated [tex]\Delta E[/tex] is given by

[tex]\Delta E = VI\Delta t = (12\:\text{V})(1.2\:\text{A})(300\:\text{s})[/tex]

[tex]\:\:\:\:\:\:\:= 4320\:\text{W} = 4.32\:\text{kW}[/tex]

A nylon string on a tennis racket is under a tension of 285 N . If its diameter is 1.10 mm , by how much is it lengthened from its untensioned length of 29.0 cm ? Use ENylon=5.00×109N/m2.

Answers

Answer:

1.74×10⁻³ m

Explanation:

Applying,

ε = Stress/strain............. Equation 1

Where ε = Young's modulus

But,

Stress = F/A.............. Equation 2

Where F = Force, A = Area

Strain = e/L.............. Equation 3

e = extension, L = Length.

Substitute equation 2 and 3 into equation 1

ε = (F/A)/(e/L) = FL/eA............. Equation 4

From the question,

Given: F = 285 N, L = 29 cm = 0.29 m, ε = 5.00×10⁹ N/m²,

A = πd²/4 = 3.14(0.0011²)/4 = 9.4985×10⁻⁶ m²

Substitute these values into equation 4

5.00×10⁹ = (285×0.29)/(9.4985×10⁻⁶×e)

Solve for e

e = (285×0.29)/(5.00×10⁹×9.4985×10⁻⁶)

e = 82.65/4.74925×10⁴

e = 1.74×10⁻³ m

A rocket explodes into two fragments, one 25 times heavier than the other. The magnitude of the momentum change of the lighter fragment is A) 25 times as great as the momentum change of the heavier fragment. B) The same as the momentum change of the heavier fragment. C) 1/25 as great as the momentum change of the heavier fragment. D) 5 times as great as the momentum change of the heavier fragment. E) 1/4 as great as the momentum change of the heavier fragment.

Answers

Answer:

B) The same as the momentum change of the heavier fragment.

Explanation:

Since the initial momentum of the system is zero, we have

0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.

0 = p + p'

p = -p'

Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0  = p

The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'

Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'

So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment.  

So, option B is the answer

A man is pulling a 20 kg box with a rope that makes an angle of 60 with the horizontal.If he applies a force of 150 N and a frictional force of 15 N is present, calculate the acceleration of the box.​

Answers

F (horizontal) = (150 N) cos(60°) - 15 N = (20 kg) a

==>   a = ((150 N) cos(60°) - 15 N)/(20 kg) = 3 m/s²

To calculate the acceleration of the box, we need to consider the net force acting on it. So, the acceleration of the box is 3 m/s².

The net force is the vector sum of the applied force and the force of friction. First, let's find the horizontal and vertical components of the applied force:

Horizontal component of the applied force (F[tex]_{horizontal}[/tex]) = F[tex]_{applied}[/tex] × cos(θ)

F[tex]_{horizontal}[/tex] = 150 N × cos(60°)

F[tex]_{horizontal}[/tex] = 150 N × 0.5

F[tex]_{horizontal}[/tex] = 75 N

Vertical component of the applied force (F[tex]_{vertical}[/tex]) = F[tex]_{applied}[/tex] × sin(θ)

F[tex]_{vertical}[/tex] = 150 N × sin(60°)

F[tex]_{vertical}[/tex] = 150 N × (√3 / 2)

F[tex]_{vertical}[/tex] ≈ 129.9 N

Now, let's calculate the net force in the horizontal direction:

Net Force in the horizontal direction (F[tex]_{net horizontal}[/tex]) = F[tex]_{horizontal}[/tex] - F[tex]_{friction}[/tex]

F[tex]_{net horizontal}[/tex] = 75 N - 15 N

F[tex]_{net horizontal}[/tex] = 60 N

Now, we can calculate the acceleration (a) using Newton's second law of motion, F = ma:

F[tex]_{net horizontal}[/tex] = m × a

60 N = 20 kg × a

Now, solve for acceleration (a):

a = 60 N / 20 kg

a = 3 m/s²

So, the acceleration of the box is 3 m/s².

To know  more about acceleration

https://brainly.com/question/460763

#SPJ2

A physics instructor wants to project a spectrum of visible-light colors from 400 nm to 700 nm as part of a classroom demonstration. She shines a beam of white light through a diffraction grating that has 600 lines per mm, projecting a pattern on a screen 2.9 m behind the grating.

Required:
How wide is the spectrum corresponding to m=1?

Answers

Answer:

  Dr = 263 10⁻⁶ m

Explanation:

The diffraction pattern for constructive interference is described by

        a sin θ = m λ

in this it indicates that the order of diffraction is m = 1

Let's use a direct proportion rule to find the separation of two slits. If there are 600 lines in 1 me, what is the distance between 2 slits

   a = 2 lines 1/600

   a = 2/600

    a = 3.33 10⁻³ mm = 3.33 10⁻⁴ cm

let's use trigonometry

      tan θ = y / L

as the measured angles are small

      tan θ = sin θ / cos θ sin θ

      sin θ = y / L

we substitute

     a  y/L = λ

     y = λ L / a

for λ = 400 10-9 m

      I = 400 10⁻⁹ 2.9 / 3.33 10⁻³

      i = 346.89 10⁻⁶ m

f

or λ = 700 nm

        y_f = 700 10⁻⁻⁹ 2.9 / 3.33 10⁻³

        y_f = 609.609 10⁻⁶ m

the separation of this spectrum

        Δr = v_f - i

        Dr = (609.609 - 346)  10 ⁻⁶

        Dr = 263 10⁻⁶ m

An observer on Earth sees spaceship 1 fly by at 0.80c. 6.0 years later, the observer on Earth sees spaceship 2 fly by at 0.80c, traveling in the same direction as the first. Both spaceships continue to travel with constant velocities. An observer in spaceship 1 observes Earth to pass spaceship 2 ____ years after Earth passed spaceship 1.

Answers

Answer:

[tex]t_2=10[/tex]

Explanation:

From the question we are told that:

Velocity of both spaceships [tex]V=0.8c[/tex]

Time [tex]t_1=6[/tex]

Generally the equation for time of spaceship 2 through earth is mathematically given by

[tex]t_2=\frac{t_1}{\sqrt{1-v^2}}[/tex]

[tex]t_2=\frac{6}{\sqrt{1-0.8^2}}[/tex]

[tex]t_2=10[/tex]

which characteristic of nuclear fission makes it hazardous?

Answers

Answer:The radioactive waste

Explanation:Fission is the splitting of a heavy unstable nucleus into two Lighter nuclei

A transparent. dielectric coating is applied to glass (εr = 4.μr=1, σ= 0) to eliminate the reflection of red light (wavelength in air of 750 nm).

a. What is the required dielectric constant and minimum thickness of the coating?
b. If violet light (wavelength in air of 420 nm) is shone onto this glass coating (6-0). what percentage of the incident power will be reflected?

Answers

Answer:

a) Dielectric constant ( λ ) = 750 * 10^-9 m

   minimum thickness of coating ( d )  = 187.5 nm

b) 3.6%

Explanation:

Given data:

wavelength of red light in air = 750 nm

εr = 4

μr = 1,  σ = 0

a) Determine the required dielectric constant and min thickness of coating used

Refractive index of coating ( n ) = √εr * μr =  √4*1 = 2

the refractive index of glass( ng)  = 1.5 which is < 2

λ = 750 * 10^-9 m

Dielectric constant ( λ ) = 750 * 10^-9 m

To determine the minimum thickness we will apply the formula below

d = m λ/2n ;  where  m = 1

∴ d = 750 nm / 2 ( 2 )

      = 187.5 nm

minimum thickness of coating ( d )  = 187.5 nm

b) Determine the percentage of the incident power that will be reflected

R = [ ( n-1 / n + 1 ) - ( n - ng / ng + n ) ]^2

   = [ ( 2 - 1 / 2 + 1 ) - ( 2 - 1.5 / 1.5 + 2 ) ]^2

   = 0.03628 =  3.6%

Current is a measure of…

Answers

Current is a measure of an Electric current. It’s more then likely C. Hope this helps Good luck !!

Two circular coils are concentric and lie in the same plane.The inner coil contains 120 turns of wire, has a radius of 0.012m,and carries a current of 6.0A. The outer coil contains 150turns and has a radius of 0.017 m. What must be the magnitudeand direction (relative to the current in the inner coil) ofthe current in the outer coil, such that the net magnetic field atthe common center of the two coils is zero?

Answers

Answer:

[tex]I_2=6.8A[/tex]

Explanation:

From the question we are told that:

Turns of inner coil [tex]N_1=120[/tex]

Radius of inner coil [tex]r_1=0.012m[/tex]

Current of  inner coil [tex]I_1=6.0A[/tex]

Turns of Outer coil [tex]N_2=150[/tex]

Radius of Outer coil [tex]r_2=0.017m[/tex]

Generally the equation for Magnetic Field is mathematically given by

[tex]B =\frac{ \mu N I}{2R}[/tex]

Therefore

Condition for the net Magnetic field to be zero

[tex]\frac{N_1* I_1}{( 2 * r_1 )}=\frac{N_2 * I_2}{2 * r_2}[/tex]

[tex]I_2=\frac{(N_1* I_1)*(( 2 * r_2)}{( 2 * r_1)*N_2}[/tex]

[tex]I_2=\frac{(120*6.0)*(( 2 * 0.017)}{( 2 * 0.012)*150}[/tex]

[tex]I_2=6.8A[/tex]

According to Newton's law of universal gravitation, the force F between two bodies of constant mass m and M is given by the formula F = G m M d 2 , where G is the gravitational constant and d is the distance between the bodies. a. Suppose that are constants. Find the rate of change of force F with respect to distance d .

Answers

Answer:

One can write F = K d^-2  where K = G M m

So dF/dd = -2 K d^-3 =   -2 K / d^3    (As d increases F decreases - it is opposite to the direction of F)

What do you understand by moment of inertia and torque?
Word limit 50-60

Please don't copy from any sources. You can rewrite. Plagiarism will be check. Thank you.

Answers

Answer:

Moment of inertia, in physics, quantitative measure of the rotational inertia of a body—i.e., the opposition that the body exhibits to having its speed of rotation about an axis altered by the application of a torque (turning force). The axis may be internal or external and may or may not be fixed.

Other Questions
Let V(x) = -x2 + 2x - 4 and W(x) = -~3 + 2x2 + x +, 5. FindV(x) + W(x).ASAP i need help ON THIS PLS Question No: 9 Of 50 Time Left : 59:18QUESTIONWhich of the following two entities (reading from Left to right) can be connected by the dot operator?A class member and a class object.A class object and a class,A constructor and a member of that class.OBODA class object and a member of that class. Long strands of genetic information are stored in ________. A. Enzymes B. Adenine C. Chromosomes D. Mutations help me with this one What is a good reason to contribute to a 401(k) retirement account?It helps employees pay monthly expenses.It guarantees the same salary after age 70.The money in the 401(k) account doubles each year.The money in the 401(k) account is not taxed until withdrawn. according to hindu scriptures what is religion? are teachers the cause of indiscipline in schools. Uranium-235 and uranium-238 are different ________ of uranium(Apx answers please) The open posterior end of the pons and medulla is called what? A stick 1 meter long casts a shadow 1.3 meters long. A building casts a shadow 25 meters long. How tall is the building (to 2 decimal places) Aztec Inc. produces soft drinks. Mixing is the first department, and its output is measured in gallons. Aztec uses the FIFO method. All manufacturing costs are added uniformly. For July, the mixing department provided the following information:Production: Units in process, July 1, 60% complete 18,000 gallons Units completed and transferred out 141,000 gallons Units in process, July 31, 45% complete 16,000 gallons Costs: Work in process, July 1 $36,000Costs added during July 398,460Required:Prepare a production report. Please explain, thank you Which situation best illustrates an effect of globalization?A. A chef from China opens traditional Chinese restaurants inEurope.B. A politician from Australia promises to lower taxes for all citizens.C. A pilot from the United States flies passengers all around thecountryD. A butcher in Tanzania only accepts meat raised on local ranches. Which rules of exponents will be used to evaluate the expression. Check all that apply.[1791quotient of powersproduct of powerspower of a powerpower of a productnegative exponentzero exponent What are the students observations and inferences before he starts his investigation? Use the given degree of confidence and sample data to construct a confidence interval for the population mean . Assume that the population has a normal distribution. A laboratory tested twelve chicken eggs and found that the mean amount of cholesterol was 185 milligrams with s = 17.6 milligrams. Required:Construct a 95% confidence interval for the true mean cholesterol content of all such eggs. I need help plz anyone I don't understand this at all. What is the value of a in the function equation? cho hnh thang vung abcd vung ti A v D c AD= a cn 3, DC=3,AB= 2a. chng minh AC vung gc vi BD