Two horizontal pipes have the same diameter, but pipe B is twice as long as pipe A. Water undergoes viscous flow in both pipes, subject to the same pressure difference across the lengths of the pipes. If the flow rate in pipe B is Q=ΔV/Δt what is the flow rate in pipe A? Viscosity: Two horizontal pipes have the same diameter, but pipe B is twice as long as pipe A. Water undergoes viscous flow in both pipes, subject to the same pressure difference across the lengths of the pipes. If the flow rate in pipe B is what is the flow rate in pipe A?
a) Q√2
b) 16Q
c) 2Q
d) 4Q
e) 8Q

Answers

Answer 1

Answer:

c) 2Q

Explanation:

From the given information:

The pressure inside a pipe can be expressed by using the formula:

[tex]\Delta P = \dfrac{128 \mu L Q}{\pi D^4}[/tex]

Since the diameter in both pipes is the same, we can say:

[tex]D = D_A = D_B[/tex]

where;

length of the first pipe A [tex]L_A = L[/tex] and the length of the second pipe B [tex]L_B = 2L[/tex]

Since the difference in pressure is equivalent in both pipes:

Then:

[tex]\dfrac{128 \mu L_1Q_1}{\pi D_1^4} = \dfrac{128 \mu L_2Q_2}{\pi D_2^4}[/tex]

[tex]\dfrac{ L_1Q_1}{D_1^4} = \dfrac{ L_2Q_2}{D_2^4}[/tex]

[tex]\dfrac{ LQ_1}{D^4} = \dfrac{ 2LQ}{D^4}[/tex]

[tex]\mathbf{Q_1 = 2Q}[/tex]

Answer 2

The flow rate in pipe B is 2Q of the flow rate of the pipe A

What is flow rate?

The flow rate is defined as the flow of the fluid across the cross section in per unit time.

From the given information:

The pressure inside a pipe can be expressed by using the formula:

[tex]\Delta p=\dfrac{128\mu LQ}{\pi D^4}[/tex]

Since the diameter in both pipes is the same, we can say:

[tex]D=D_A=D_B[/tex]

where;

length of the first pipe A  [tex]L_A=L[/tex] and the length of the second pipe B  

[tex]L_B=2L[/tex]

Since the difference in pressure is equivalent in both pipes:

Then:

[tex]\dfrac{128\mu L_1Q_1}{\pi D_1^4}=\dfrac{128\mu L_2Q_2}{\pi D_2^4}[/tex]

[tex]\dfrac{L_1Q_1}{D_1^4}=\dfrac{L_2Q_2}{D_2^4}[/tex]

[tex]\dfrac{LQ_1}{D_1^4}=\dfrac{2LQ}{D_2^4}[/tex]

[tex]Q_1=2Q[/tex]

Hence the flow rate in pipe B is 2Q of the flow rate of the pipe A

To know more about Flow rate follow

https://brainly.com/question/26061120


Related Questions

A long string is moved up and down with simple harmonic motion with a frequency of 46 Hz. The string is 579 m long and has a total mass of 46.3 kg. The string is under a tension of 3423 and is fixed at both ends. Determine the velocity of the wave on the string. What length of the string, fixed at both ends, would create a third harmonic standing wave

Answers

Answer:

a)  [tex]v=206.896m/s[/tex]

b)  [tex]L=6.749m[/tex]

Explanation:

From the question we are told that:

Frequency [tex]F=46Hz[/tex]

Length [tex]l=579m[/tex]

Total Mass [tex]T=4.3kg[/tex]

Tension [tex]T=3423[/tex]

a)

Generally the equation for velocity is mathematically given by

[tex]v=\sqrt{\frac{T}{\rho}}[/tex]

Where

[tex]\pho=m*l\\\\\pho=46*579\\\\\pho=0.0799kg/m[/tex]

Therefore

[tex]v=\sqrt{\frac{3423}{0.0799}}[/tex]

[tex]v=206.896m/s[/tex]

b)

Generally the equation for length of string is mathematically given by

[tex]L=\frac{3\lambda}{2}[/tex]

Where

[tex]\lambda=\frac{v}{f}[/tex]

[tex]\lambda=\frac{206.89}{46}[/tex]

[tex]\lambda=4.498[/tex]

Therefore

[tex]L=\frac{3*4.498}{2}[/tex]

[tex]L=6.749m[/tex]

The "Pressure" meter allows you to read the pressure at different depths in the fluid. Place the pressure meter close to the bottom of the pool, and read the pressure. Slowly move the pressure meter toward the surface of the water in the pool and read the pressure at different depths in the pool. What happens to pressure in the fluid as the depth of the fluid decreases?

Answers

Answer:

The pressure near the surface of the pool will be less as compared that the bottom of the pool as water has weight. This is in relation to gravity

Explanation:

There is a relationship between volume and pressure. The increase in depth leads to an increase in volume and an increase in the force of gravity near the surface as compared to lifting and rising light pressure as light air rises and heavy air sinks.

Si un resorte de constante elástica 1300 n/m se comprime 12 cm ¿Cuanta energía almacena? Y si estira 12cm ¿Cuanta energía almacena?

Answers

La energía que almacena el resorte cuando se comprime y estira 12 cm es 9,4 J.  

La energía potencial elástica del resorte se puede calcular con la siguiente ecuación:

[tex] E_{p} = \frac{1}{2}kx^{2} [/tex]

En donde:

k: es la constante del resorte = 1300 N/m

x: es la distancia de compresión o de elongación = 12 cm = 0,12 m

Dado que la energía es proporcional al cuadrado de la distancia recorrida por el resorte (x), la energía almacenada por el resorte durante la compresión será la misma que la energía almacenada por la elongación.

Por lo tanto, la energía almacenada es:

[tex]E_{p} = \frac{1}{2}kx^{2} = \frac{1}{2}1300 N/m*(0,12 m)^{2} = 9,4 J[/tex]                                                            

Entonces, la energía del resorte cuando se comprime y cuando se estira es la misma, a saber 9,4 J.                

Para saber más sobre energía potencial visita este link: https://brainly.com/question/156316?referrer=searchResults

Espero que te sea de utilidad!

Answer:

Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.

Explanation:

La Energía Potencial Elástica almacenada por el resorte ([tex]U_{e}[/tex]), en joules, se calcula a partir de la Ley de Hooke, la definición de Trabajo y el Teorema del Trabajo y la Energía, cuya expresión se presenta abajo:

[tex]U_{e} = \frac{1}{2}\cdot k\cdot (x_{f}^{2}-x_{o}^{2})[/tex] (1)

Donde:

[tex]k[/tex] - Constante elástica del resorte, en newtons por metro.

[tex]x_{o}[/tex] - Posición inicial del resorte, en metros.

[tex]x_{f}[/tex] - Posición final del resorte, en metros.

Nótese que el resorte sin deformar tiene una posición de cero, la tensión tiene un valor positivo y la compresión, negativo.

Asumiendo que en ambos casos el resorte se encuentra inicialmente sin deformar, se reduce (1) a una forma de función par, es decir, una función que cumple con la propiedad de que [tex]f(x) = f(-x)[/tex], se encuentra que al comprimirse o estirarse en la misma medida almacena la misma cantidad de energía.

La cantidad de energía a almacenar es:

[tex]U_{e} = \frac{1}{2}\cdot \left(1300\,\frac{N}{m} \right)\cdot (0,12\,m)^{2}[/tex]

[tex]U_{e} = 9,360\,J[/tex]

Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.

S.I unit for distance =______

(A) m (B)cm

(c) km (d) mm

Answers

Answer:

opinion a

Explanation:

the si units of distance is metre (m)

Answer:

A

Explanation:

Describe how the words Science and optics would appear when viewed in a plane mirror?

Answers

Answer:

Lateral inversion will occur in a plane mirror.

Explanation:

When words are displayed in a plane or flat mirror, the result is that if the words are displayed left, they change to right and if they were normally displayed right, they change to left. This phenomenon is known as lateral inversion. So, this will apply to the words, Science and optics. Only the sides will be interchanged.

A plane mirror reflects light, therefore, the image that is produced by it remains the same size. The image produced will not appear upside down. Only the sides will be interchanged.

what effect does the force of gravity have on a stone thrown vertically upwards​

Answers

Answer:

rock go down

Explanation:

what comes up must come down.

if a projectile travels in the air for 6 seconds when does the projectile reach its highest point

Answers

This question deals with projectile motion, which is a motion on both the x-axis and y-axis, simultaneously. The total time of flight of the projectile trajectory is given, while the time to reach the highest point of the projectile is required to be found.

The projectile will reach the highest point in "3 seconds".

The total time of flight of a projectile is the time during which the projectile remains in the air. For a projectile motion that ends up on the same horizontal level, from where it started, the time to reach the highest point, is equal to half of the total time of flight.

In other words, the projectile motion takes the same time, to go from the starting level to the highest point (i.e upward motion), as the time taken to reach the starting level from the highest point (i.e downward motion).

[tex]t = \frac{1}{2}T[/tex]

where,

t = time to reach the highest point = ?

T = total time of flight = 6 seconds

Therefore,

[tex]t - \frac{1}{2}(6\ seconds)[/tex]

t = 3 seconds

Learn more about the projectile motion here:

https://brainly.com/question/20689870?referrer=searchResults

Give reason why think before you use a simple cell ?​

Answers

I agree with the other dude

The disadvantages of simple cell are: It is not rechargeable. The battery needs to be disposed of after all the power has been used up. It can't produce electricity anymore. That is why, why think before you use a simple cell.​

What are the benefits and  drawbacks of simple cell?

A battery designed to be used only once is called a simple cell.  Small gadgets used in the house are frequently powered by simple cells.

The benefits of a simple cell include:

A simple cell can be used to power small electronic devices because of its modest size. (Games, lightsabers, radios on the go, cameras, hearing aids)Simple cell electrolyte is not very detrimental to the environment.Simple cells are reasonably priced.

Among the drawbacks of a simple cell are:

The biggest drawback of a simple cell is that once it runs out of electricity, it cannot be replenished.

Learn more about cell here:

https://brainly.com/question/30046049

#SPJ2

3. Some guitarists like the feel of a set of strings that all have the same tension. For such a guitar, the G string (196 Hz) has a mass density of 0.31 g/m. What is the mass density of the A string (110 Hz)

Answers

Answer:

0.98 g/m

Explanation:

Note: Since Tension and frequency are constant,

Applying,

F₁²M₁ = F₂²M₂............... Equation 1

Where F₁ = Frequency of the G string, F₂ = Frequency of the A string, M₁ = mass density of the G string, M₂ = mass density of the A string.

make M₂ the subject of the equation

M₂ = F₁²M₁/F₂²............... Equation 2

From the question,

Given: F₁ = 196 Hz, M₁ = 0.31 g/m, F₂ = 110 Hz

Substitute these values into equation 2

M₂ = 196²(0.31)/110²

M₂ = 0.98 g/m

An ideal double slit interference experiment is performed with light of wavelength 640 nm. A bright spot is observed at the center of the resulting pattern as expected. For the 2n dark spot away from the center, it is known that light passing through the more distant slit travels the closer slit.
a) 480 nm
b) 600 nm
c) 720 nm
d) 840 nm
e) 960 nm

Answers

Answer:

960 nm

Explanation:

Given that:

wavelength = 640 nm

For the second (2nd) dark spot;  the order of interference m = 1

Thus, the path length difference is expressed by the formula:

[tex]d sin \theta = (m + \dfrac{1}{2}) \lambda[/tex]

[tex]d sin \theta = (1 + \dfrac{1}{2}) 640[/tex]

[tex]d sin \theta = ( \dfrac{3}{2}) 640[/tex]

dsinθ = 960 nm

two electrons are separated by 1.10m, What is the magnitude of the electric force each electron exerts on the other?

Answers

Answer:

4.56×10¯⁷¹ N

Explanation:

From the question given above, the following data were obtained:

Distance apart (r) = 1.10 m

Force (F) =?

NOTE:

Gravitational constant (G) = 6.67×10¯¹¹ Nm² /Kg²

Mass of electron = 9.1×10¯³¹ Kg

Mass of the two elections = M₁ = M₂ = 9.1×10¯³¹ Kg

Thus, we can obtain the force of attraction between the two elections as illustrated below:

F = GM₁M₂ / r²

F = 6.67×10¯¹¹ × (9.1×10¯³¹)² / (1.1)²

F = 4.56×10¯⁷¹ N

Thus, the force of attraction between the two elections is 4.56×10¯⁷¹ N

An object whose weight is 100 lbf experiences a decrease in kinetic energy of 500 ft lbf and an increase in potential energy of 1500 ft lbf. The initial velocity and elevation of the object, each relative to the surface of the earth, are 40 ft/s and 30 ft, respectively. If g 5 32.2 ft/s2 , determine:
(a) the final velocity, in ft/s.
(b) the final elevation, in ft.

Answers

Answer:

a)  [tex]v_2=35.60ft/sec[/tex]

b) [tex]h_2=45ft[/tex]

Explanation:

From the question we are told that:

Weight [tex]W=100lbf[/tex]

Decrease in kinetic energy [tex]dK.E= 500 ft lbf[/tex]

Increase in potential energy [tex]dP.E =1500 ft lbf.[/tex]

Velocity [tex]V_1=40[/tex]

Elevation [tex]h=30ft[/tex]

[tex]g=32.2 ft/s2[/tex]

a)

Generally the equation for Change in Kinetic Energy is mathematically given by

[tex]dK.E=\frac{1}{2}m(v_1^2-v_2^2)[/tex]

[tex]500=\frac{1}{2}*\frac{100}{32.2}(v_1^2-v_2^2)[/tex]

[tex]v_2=35.60ft/sec[/tex]

b)

Generally the equation for Change in Potential Energy is mathematically given by

[tex]dP.E=mg(h_2-h_1)[/tex]

[tex]1500=mg(h_2-h_1)[/tex]

[tex]h_2=45ft[/tex]

The US currently produces about 27 GW of electrical power from solar installations. Natural gas, coal, and oil powered installations produce about 740 GW of electrical power. The average intensity of electromagnetic radiation from the sun on the surface of the earth is 1000 W/m2 . If solar panels are 30% efficient at converting this incident radiation into electrical power, what is the total surface area of solar panels responsible for the 27 GW of power currently produced

Answers

Answer:

The total surface area is "90 km²".

Explanation:

Given:

Power from solar installations,

= 27 GW

Other natural installations,

= 740 GW

Intensity,

[tex]\frac{F}{At}=\frac{P}{A}=1000 \ W/m^2[/tex]

%n,

= 30%

Now,

⇒ %n = [tex]\frac{out.}{Inp.}\times 100[/tex]

then,

⇒ [tex]Inp.=\frac{27}{30}\times 100[/tex]

           [tex]=90 \ GW[/tex]

As we know,

⇒ [tex]I=\frac{P}{A}[/tex]

by substituting the values, we get

[tex]1000=\frac{90\times 10^9}{A}[/tex]

    [tex]A = \frac{90\times 10^9}{10^3}[/tex]

        [tex]=90\times 10^6[/tex]

        [tex]=90 \ km^2[/tex]

If car A passes car B, then car A must be
A. accelerating at a greater rate than car B.
B. moving faster than car B, but not necessarily accelerating
C. accelerating
D. moving faster than car B and accelerating more than car B

Answers

Answer:

B. moving faster than car B, but not necessarily accelerating

Explanation:

Velocity is the speed of something. So car A's velocity is greater than car B but does not mean car A is accelerating.

Cuando el pistón tiene un volumen de 2x10^-4 m^3, el gas en el pistón está a una presión de 150 kPa. El área del pistón es 0.00133 m^2. Calcular la fuerza que el gas ejerce sobre el embolo del pistón.

Answers

Answer:

F = 1.128 10⁸ Pa

Explanation:

Pressure is defined by

         P = F / A

If the gas is ideal for equal force eds on all the walls, so on the piston area we have

        F = P A

We reduce the pressure to the SI system

       P = 150 kpa (1000 Pa / 1kPa = 150 103 Pa

we calculate

       F = 150 10³ / 0.00133

       F = 1.128 10⁸ Pa

These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor

Answers

Answer:

Following are the solution to the given question:

Explanation:

For charging plates that are connected in a similar manner:

Calculating the total charge:

[tex]\to q =q_1 + q_2 = C_1V_1 +C_2V_2 =1320 + 2714 = 4034 \mu C[/tex]

Calculating the common potential:

[tex]\to V = \frac{q}{C}= \frac{q}{(C_1 + C_2)} =\frac{4034}{6.8} = 593 \ V\\\\[/tex]

Calculating the charge after redistribution:

[tex]When: \\\\q = q_{1}' + q_{2}' = q_1 + q_2[/tex]        

[tex]\to q_{1}' = C_1V = 2.2 \times 593 = 1305\ \mu C\\ \\ \to q_{2}' = C_2V = 4.6 \times 593 = 2729 \ \mu C[/tex]

Electromagnetic radiation with a wavelength of 525 nm appears as green light to the human eye. Calculate the frequency of this light. Be sure to include units in your answer.

Answers

Answer:

5.71×10¹⁴ Hz

Explanation:

Applying,

v = λf................. Equation 1

Where v = speed of the electromagnetic radiation, λ = wavelength of the electromagnetic radiation, f = frequency

make f the subject of the equation

f = v/λ............. Equation 2

From the question,

Given: λ = 525 nm = 5.25×10⁻⁷ m,

Constant: Speed of electromagnetic wave (v) = 3.0×10⁸ m/s

Substitute these values into equation 2

f = (3.0×10⁸)/(5.25×10⁻⁷)

f = 5.71×10¹⁴ Hz

Hence the frequency of light is 5.71×10¹⁴ Hz

A light spectrum is formed on the screen using a diffraction grating. The entire apparatus made up of laser, grating and the screen is now immersed in a liquid with refractive index 1.33. Do the bright spots on the screen get closer together, farther apart, remain the same or disappear entirely? Explain

Answers

Answer:

the points are closer to each other

Explanation:

The expression for the diffraction of a grating is

         d sin θ = m λ

         sin θ = m λ / d            (1)

where d is the distance between slits and m is the order of diffraction, the most general is to work in the order m = 1, the angle te is the angle of diffraction

When we immerse the apparatus in a medium with refractive index n = 1.33, the light emitted by the laser must comply

         v = λ f

where v is the speed of light in the medium, the frequency remains constant

velocity and refractive index are related

          n = c / v

          v = c / n

we substitute

          c / n = λf

          λ = [tex]\frac{c}{f} \ \frac{1}{n}[/tex]

          λ = λ₀ / m

where λ₀ is the wavelength in vacuum

we substitute is equation 1

         d sin θ = m λ₀ / n

         sin θ =  λ₀/ n d

         sin θ = [tex]\frac{1}{n}[/tex]  sin θ₀

we can see that the value of the sine is redueced since the refractive index is greater than 1,

consequently the points are closer to each other

find the upward force in Newton when each of these is under water(density of 1g/cm3) a lump of iron of volume 2000cm3​

Answers

Answer:

Upthrust = 19.6 N

Explanation:

When an object is immersed under water, the upward force it experience is called an upthrust. An upthrust is a force which is applied on any object in a fluid which acts in an opposite direction to the direction of the weight of the object.

Upthrust = density of liquid x gravitational force x volume of object

i.e U = ρ x g x vol

Given: ρ = 1g/[tex]cm^{3}[/tex] (1000 kg/[tex]m^{3}[/tex]), volume = 2000 c[tex]m^{3}[/tex] (0.002 [tex]m^{3}[/tex]) and g = 9.8 m/[tex]s^{2}[/tex]

So that;

U = 1000 x 9.8 x 0.002 (kg/[tex]m^{3}[/tex] x [tex]m^{3}[/tex] x m/[tex]s^{2}[/tex])

   = 19.6 Kg m/[tex]s^{2}[/tex]

U = 19.6 Newtons

The upthrust on the iron is 19.6 N.

A particle moves along X-axis in such a way that X-coordinate varies with time according to expression x= 2-5t+6t2 meters, Calculate the initial velocity of the particle?

Answers

A  5

v=  dt/ dx  =−5+12t

Initial velocity means at t=0, which is −5+0=−5.

Thus, −v=5n

what is threshold frequency?​

Answers

Answer:

"the minimum frequency of radiation that will produce a photoelectric effect."

Explanation:

That answer was derived from gogle cuz my explanations was harder to explain but good luck

A large metal sphere has three times the diameter of a smaller sphere and carries three times the charge. Both spheres are isolated, so their surface charge densities are uniform. Compare (a) the potentials (relative to infinity) and (b) the electric field strengths at their surfaces.

Answers

Answer:

A. Equals to that of the smaller sphere

B. 3 times less than that of the smaller sphere

Explanation:

(a) Equals to that of the smaller sphere

The potential of an isolated metal sphere, with charge Q and radius R, is kQ=R, so a sphere with charge 3Q and radius 3R has the same potential

b) 3 times less than that of the smaller sphere

However, the electric field at the surface of the smaller sphere is ?=? 0 = kQ=R2 , so tripling Q and R reduces the surface field by a factor of 1/3

What is cubical expansivity of liquid while freezing

Answers

Answer:

"the ratio of increase in the volume of a solid per degree rise of temperature to its initial volume" -web

Explanation:

tbh up above ✅

Answer:

cubic meter

Explanation:

Increase in volume of a body on heating is referred to as volumetric expansion or cubical expansion

Your physics TA has a far point of 0.759 m from her eyes and is able to see distant objects in focus when wearing glasses with a refractive power of −1.35 D. Determine the distance between her glasses and eyes.

Answers

Answer:

[tex]d=0.019m[/tex]

Explanation:

From the question we are told that:

Far point [tex]x=0.759m[/tex]

Refractive power [tex]P=-1.35 D.[/tex]

Generally, the equation for Focal length is mathematically given by

[tex]F=\frac{1}{P}[/tex]

[tex]F=\frac{1}{-1.35}[/tex]

[tex]F=-0.74m[/tex]

Therefore

[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}[/tex]

Where

[tex]u=o[/tex]

[tex]\frac{1}{-0.74}=\frac{1}{0}+\frac{1}{v}[/tex]

[tex]v=-0.74m[/tex]

Therefore,The between her glasses and eyes

[tex]d=x-v[/tex]

[tex]d=0.759-0.74m[/tex]

[tex]d=0.019m[/tex]

What is the name of the compound br8P4

Answers

Answer:

Octabromine tetraphosphide

Explanation:

This compound has in its formula:

- Eight bromines

- Four phosphorous

8 → octa prefix

4 → tetra prefix

Right answer is Octabromine tetraphosphide

A string has its 4th harmonic at 31.5 Hz. What is the frequency of its third harmonic?

Answers

The correct answer is 7.5Hz

Answer:

The answer would be 7.5 Hz.

Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in J) is stored in this inductor when 21.0 A of current flows through it? J (c) How fast (in s) can it be turned off if the induced emf cannot exceed 3.00 V? s

Answers

Answer:

(a) The self inductance, L = 21.95 mH

(b) The energy stored, E = 4.84 J

(c) the time, t = 0.154 s

Explanation:

(a) Self inductance is calculated as;

[tex]L = \frac{N^2 \mu_0 A}{l}[/tex]

where;

N is the number of turns = 1000 loops

μ is the permeability of free space = 4π x 10⁻⁷ H/m

l is the length of the inductor, = 45 cm = 0.45 m

A is the area of the inductor (given diameter = 10 cm = 0.1 m)

[tex]A = \pi r^2 = \frac{\pi d^2}{4} = \frac{\pi \times (0.1)^2}{4} = 0.00786 \ m^2[/tex]

[tex]L = \frac{(1000)^2 \times (4\pi \times 10^{-7}) \times (0.00786)}{0.45} \\\\L = 0.02195 \ H\\\\L = 21.95 \ mH[/tex]

(b) The energy stored in the inductor when 21 A current ;

[tex]E = \frac{1}{2}LI^2\\\\E = \frac{1}{2} \times (0.02195) \times (21) ^2\\\\E = 4.84 \ J[/tex]

(c) time it can be turned off if the induced emf cannot exceed 3.0 V;

[tex]emf = L \frac{\Delta I}{\Delta t} \\\\t = \frac{LI}{emf} \\\\t = \frac{0.02195 \times 21}{3} \\\\t = 0.154 \ s[/tex]

Three wires are connected at a branch point. One wire carries a positive current of 18 A into the branch point, and a second wire carries a positive current of 7 A away from the branch point. Find the current carried by the third wire into the branch point.

Answers

Answer:

The current in third branch is 11 A.

Explanation:

incoming current in one branch = 18 A

outgoing current in the other branch = 7 A

let the current in the third branch is i.

According to the Kirchoff's fist law in electricity

incoming current = out going current

18 = 7 + i

i = 11 A

The current in third branch is 11 A.

A Geiger counter registers a count rate of 8,000 counts per minute from a sample of a radioisotope. The count rate 24 minutes later is 1,000 counts per minute. What is the half-life of the radioisotope?

Answers

11.54 minutes

Explanation:

The decay rate equation is given by

[tex]N = N_0e^{-\frac{t}{\lambda}}[/tex]

where [tex]\lambda[/tex] is the half-life. We can rewrite this as

[tex]\dfrac{N}{N_0} = e^{-\frac{t}{\lambda}}[/tex]

Taking the natural logarithm of both sides, we get

[tex]\ln \left(\dfrac{N}{N_0}\right) = -\left(\dfrac{t}{\lambda}\right)[/tex]

Solving for [tex]\lambda[/tex],

[tex]\lambda = -\dfrac{t}{\ln \left(\frac{N}{N_0}\right)}[/tex]

[tex]\:\:\:\:= -\dfrac{(24\:\text{minutes})}{\ln \left(\frac{1000\:\text{counts/min}}{8000\:\text{counts/min}}\right)}[/tex]

[tex]\:\:\:\:=11.54\:\text{minutes}[/tex]

A parallel plate capacitor creates a uniform electric field of and its plates are separated by . A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed

Answers

Complete Question

A parallel plate capacitor creates a uniform electric field of 5 x 10^4 N/C and its plates are separated by 2 x 10^{-3}'m. A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed?

Answer:

[tex]V=1.4*10^5m/s[/tex]

Explanation:

From the question we are told that:

Electric field [tex]B=1.5*10N/C[/tex]

Distance [tex]d=2 x 10^{-3}[/tex]

At negative plate

Generally the equation for Velocity is mathematically given by

[tex]V^2=2as[/tex]

Therefore

[tex]V^2=\frac{2*e_0E*d}{m}[/tex]

[tex]V^2=\frac{2*1.6*10^{-19}(5*10^4)*2 * 10^{-3}}{1.67*10^{-28}}[/tex]

[tex]V=\sqrt{19.2*10^9}[/tex]

[tex]V=1.4*10^5m/s[/tex]

Other Questions
25. Several functions represent different savings account plans. Which functions are linear? A. y = 3.6 x2 B. y = 5.25 x c. y = 0,5 D.y = 2.5 x +7 E. y = 2.50(1.3)*NEED HELPP When a weed solution is added to a lawn, the number of weeds can be represented by the function W(d)=1500(.75)^d where d is the number of days since application. By what percent does the population of weeds decrease each day Is a decimal less than a whole number? A firework is launched into the air from ground level with an initial velocity of 128 ft/s. If acceleration due to gravity is 16 ft/s2, what is the maximum height reached by the firework? The organisms that harness non-biological energy and convert it to biologically relevant/useful energy are called __ 1 __ _. The organisms that consume these are called __ 2 __ _ (it should end in -ores) which occur at the ___ 3 ___ trophic level. The number of trophic levels that any ecological system will primarily dependent on the __4__ organisms. Find the values of x and y that make these triangles congruent by the HL Theorem. Do you think that interest and capacity play a great role to get success in a profession?Give your opinion. The idea that leaders are born with unique characteristics that make them different form ordinary people is the Question 9 options: a) A contingency theory of leadership. b) The leadership behaviors theory. c) Task centered leadership theory. d) The great-person theory. Imagine you are in a financial difficulty. Write an email to your manager to ask for an advance payment. What is the domain of g(x) X is a real number Complete the problems. (From Example 2)1. How much compound interest will $50,000 have earned in 10 years at 6.4% annual interest compoundedquarterly? Suppose a project with a negative net present value would provide intangible benefits. To estimate the annual value of intangible benefits needed to accept the project, ______ the negative net present value excluding intangible benefits by the ______. This is confusing very much, Im having a lot of problems at the moment and Im in a lot of pain. Hey can anyone help me with this question A large container is partially filled with n liters of water. Ito adds 10 liters of water to the container, making it 60% full. If Ignacio adds 6 more liters of water, the container will be 75% full.What is the value of n? True or false? Shooting a vicious animal is permitted in self-defense. What is the answer please help Tess created a Pythagorean triple of (24, 32, 40) by multiplying the known Pythagorean triple 3, 4, and 5 by 8. Is Tess correct? Can a Pythagorean triple be created using multiples of a known Pythagorean triple.Yes, as long as each number in the Pythagorean triple is multiplied by the same whole number.Yes, as long as each number in the Pythagorean triple is multiplied by a different whole number.No, Pythagorean triples only exist with small numbers.No, multiplying a known Pythagorean triple by a whole number will not create a Pythagorean triple. Generally, local governments get the least amount of funding from:A. property taxB. income tax C. sales taxD. state government Phn tch cc quy lut hot ng thn kinh cp cao tr v vn dng trong thit lp thi quen hc tp v k lut hc sinh tiu hc.