Explanation:
the reaction is indeed an oxidation reduction reaction
What is a litmus solution? How is it obtained?
How many grams of glucose are needed to prepare 144.3 mL of a 1.4%(m/v) glucose solution?
Answer:
2.0202 grams
Explanation:
1.4% (m/v) glucose solution means: 1.4g glucose/100mL solution.
so ?g glucose = 144.3 mL soln
Now apply the conversion factor, and you have:
?g glucose = 144.3mL soln x (1.4g glucose/100mL soln).
so you have (144.3x1.4/100) g glucose= 2.0202 grams
A 25.0 mL sample of 0.150 M hypochlorous acid is titrated with a 0.150 M NaOH solution. What is the pH at the equivalence point? The Kaof hypochlorous acid is 3.0x10^-8.
a) 10.20
b) 7.00
c) 6.48
d) 7.52
e) 14.52
Answer:
pH = 10.20
Explanation:
The HClO reacts with NaOH as follows:
HClO + NaOH → H2O + NaClO
Where HClO and NaOH react in a 1:1 reaction.
As the concentration of both reactions is the same and the reaction is 1:1, to reach equivalence point are required the same 25.0mL.
And the NaClO produced decreases its concentration in 2 because the volume is doubled.
The concentration of NaClO is: 0.150M / 2 = 0.075M
The equilibrium of NaClO is:
NaClO(aq) + H2O(l) ⇄ HClO(aq) + OH-(aq)
Where Kb of reaction is 1.0x10⁻¹⁴ / Ka =
1.0x10⁻¹⁴ / 3.0x10⁻⁸ = 3.33x10⁻⁷ = [HClO] [OH-] / [NaClO]
[NaClO] = 0.075M
As both HClO and OH- comes from the same equilibrium,
[HClO] = [OH-] = X
Where X is the reactoin coordinate
Replacing:
3.33x10⁻⁷ = [X] [X] / [0.075M]
2.5x10⁻⁸ = X²
X = 1.58x10⁻⁴M = [OH-]
pOH = -log [OH-]
pOH = 3.80
pH = 14 - pOH
pH = 10.20A Single Orbital With Two Lobes At 90°In A Single Plane And A Node In The Center Would Likely Be Found Where?
a.4s
b.4p
c.4d
d. it would not be found in any of these
e.4f
crassify the given quantities into scalar quantity and vetor quantity
Answer:
where is the quantities?
Decide which of the following statements are true and which are false.
True False: Real gas molecules behave most ideally at low temperature and high pressure.
True False: Ideal gas molecules have small volumes and exert weak attractive forces on one another.
True False: At constant temperature, the heavier the gas molecules, the smaller the average velocity.
True False: In order for two separate 1.0 L samples of O2(g) and H2(g) to have the same average velocity, the O2(g) sample must be at a lower temperature than the H
2(g) sample.
True False: At constant temperature, the heavier the gas molecules, the larger the average kinetic energy.
True False: As temperature decreases, the average kinetic energy of a sample of gas molecules decreases.
Answer:
False
True
True
False
False
True
Explanation:
Ideal behavior of gases is observed at high temperature and low pressure when the gas molecules are isolated from each other.
According to the kinetic theory of gases, gases occupy negligible volume and do not exert significant attractive forces on each other.
The average velocity of gases at constant temperature depends on molecular mass. Heavier molecules possess smaller average velocity than lighter molecules at constant temperature.
At constant temperature, molecules of different gases have the same average kinetic energy but different average velocities since they have different molecular masses. So, the average kinetic energy of gas molecules only depends on temperature.
Is pre ap chemistry hard in high school?
If you don't practice enough it's obviously going to be hard but if you practice enough it's going to be a piece of cake so don't think if it's going to be hard or not just think it's going to be worth the try at the very end
The reaction for photosynthesis producing glucose sugar and oxygen gas is:
__CO2(g) + __H2O(l) UV/chlorophyl−→−−−−−−−−−−−−−− __C6H12O6(s) + __O2(g)
What is the mass of glucose (180.18 g/mol) produced from 2.20 g of CO2 (44.01 g/mol)?
a. 66.1 g C6H12O6
b. 396 g C6H12O6
c. 54.0 g C6H12O6
d. 1.50 g C6H12O6
e. 9.01 g C6H12O6
The correct option is d.: 1.5 grams of glucose is produced from 2.20 g of CO₂.
To find the mass of glucose produced, first you must know the balanced reaction. For this, the Law of Conservation of Matter is followed.
The law of conservation of matter states that since no atom can be created or destroyed in a chemical reaction, the number of atoms that are present in the reagents has to be equal to the number of atoms present in the products.
So, in this case, the balanced reaction is:
6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the amounts of moles of each reactant and product participate in the reaction:
CO₂: 6 moles H₂O: 6 moles C₆H₁₂O₆: 1 mole O₂: 6 molesSo, you know that 2.20 g of CO₂ react, whose molar weight is 44.01 g/mole. By definition of molar mass, 1 mole of CO₂ has 44.01 g. So, the number of moles that 2.20 grams of the compound represent is calculated as:
[tex]moles of CO_{2} =2.20 grams*\frac{1 mole}{44.01 grams}[/tex]
moles of CO₂= 0.05 moles
Now you must follow the following rule of three: if by stoichiometry of the reaction 6 moles of CO₂ produce 1 mole of C₆H₁₂O₆, 0.05 moles of CO₂ produce how many moles of C₆H₁₂O₆?
[tex]moles of C_{6} H_{12} O_{6} =\frac{0.05moles of CO_{2} *1 mole of C_{6} H_{12} O_{6}}{6moles of CO_{2}}[/tex]
moles of C₆H₁₂O₆= 8.33*10⁻³
Being the molar mass of glucose 180.18 g/mole, the mass that 8.33*10⁻³ moles of the compound represent is calculated as:
[tex]mass of glucose =8.33*10^{-3} moles*\frac{180.18 grams}{1 mole}[/tex]
mass of glucose= 1.5 grams
In summary, the correct option is d.: 1.5 grams of glucose is produced from 2.20 g of CO₂.
Learn more about a similar problem: https://brainly.com/question/24299106
Write the chemical formula for the following:
a. The conjugate acid of amide ion, NH₂-
b. The conjugate base of nitric acid, HNO₃
Follow the rules of Bronsted Lowry theory
Acids take a HBases donate a HSo
#a
NH_2-
Add a H
Conjugate acid is NH_3#b
HnO_3
Take a H
Conjugate base is NO_3-#1
Conjugate acid means one H+ is added
NH_2+H+=NH_3sw
#2
Conjugate base means donate a H+
HNO_3-H=NO_3-5. How many moles are present in 4.20x10^24 atoms of Pb
Explanation:
[tex]57816 \: moles[/tex]
are present in 4.20x10^24 atoms of Pb
Answer:
7 moles
Explanation:
(4.2*10^24)/(6*10^23)=7
Calculate the heat change in calories for melting of 0.30 kg of water at 0*C. The
heat of fusion for water is 80 cal/g. The heat of vaporization of water is 540 cal/g.
The specific heat capacity of water is 1.00 cal/g*C.
Answer: 24 kcal
Explanation:
Given
Mass of water [tex]m=0.3\ kg[/tex]
Temperature of water [tex]T_1=0^{\circ}[/tex]
Heat of fusion [tex]L_f=80\ cal/g[/tex]
Heat of vaporization [tex]L_v=540\ cal/g[/tex]
Specific heat of water [tex]c=1\ cal/g.^{\circ}C[/tex]
Heat require to melt the ice is
[tex]\Rightarrow Q=mL_f\\\Rightarrow Q=0.3\times 1000\times 80\\\Rightarrow Q=24000\ cal\ or\ 24\ kcal[/tex]
Thus, 24 kcal of heat is required to melt 0.3 kg of ice.
Which of the following is most likely to happen when a sound wave reflects
off a hard surface? (Assume that neither the source of the sound nor the hard
surface is moving.)
A. A change in speed
B. An echo
C. A change in pitch
D. A beat frequency
В
an echo is caused by the fact that waves can be reflected by solid surfaces, this is due to the dynamic pattern of rarefactions and air seals near the reflecting surface
Balance the following reaction:
_______ CO₂ + _______ H₂O + heat ↔ _______ C₆H₁₂O₆ + _______ O₂
Please explain!
*Note: If any of the coefficients are the number one. Please, write "1" in the space. Thanks!
Answer:
6CO2+6H2O+heat" C6H12O6+6O2
the best way to balance a chemical reaction is to start with balancing the hydrogen followed by the other elements then lastly oxygen.so in this case if you put a 6 in front of carbon dioxide,water and oxygen you will definitely balance it.cause at the first side you have 6 carbons similar to the product,12 oxygen similar to the product and 18 oxygen similar to the products.
I hope this helps
Answer:
Explanation:
I saw this after answering your other question on the same reaction.
To balance the chemical reaction, look at the reactants and products. As O is part of both products, focus on C and H instead.
On the products side, 1 C6H12O6 has 6 C and 12 H. So that requires the same numbers of C and H on the reactant side because of mass conservation.
That gives 6 CO2 and 6 H2O as the reactants. Counting the number of O in the reactants, there are 6*2 + 6 = 18 O. Subtracting the 6 O in C6H12O6, that leaves 12 O so there are 12/2 = 6 O2 in the products.
Combining the numbers above, the balanced equation is:
___6___ CO₂ + ___6___ H₂O + heat ↔ ___1___ C₆H₁₂O₆ + ___6___ O₂
Consider the reaction: A(aq) + 2B (aq) === C (aq). Initially 1.00 mol A and 1.80 mol B
were placed in a 5.00-liter container. The mole of B at equilibrium was determined to
be 1.00 mol. Calculate K value.
0.060
5.1
25
17
Ugh
Answer:
17
Explanation:
Step 1: Calculate the needed concentrations
[A]i = 1.00 mol/5.00 L = 0.200 M
[B]i = 1.80 mol/5.00 L = 0.360 M
[B]e = 1.00 mol/5.00 L = 0.200 M
Step 2: Make an ICE chart
A(aq) + 2 B(aq) ⇄ C(aq)
I 0.200 0.360 0
C -x -2x +x
E 0.200-x 0.360-2x x
Then,
[B]e = 0.360-2x = 0.200
x = 0.0800
The concentrations at equilibrium are:
[A]e = 0.200-0.0800 = 0.120 M
[B]e = 0.200 M
[C]e = 0.0800 M
Step 3: Calculate the concentration equilibrium constant (K)
K = [C] / [A] × [B]²
K = 0.0800 / 0.120 × 0.200² = 16.6 ≈ 17
During the reaction of 2-methyl-2-butanol with the nucleophile-solvent mixture two layers are formed after shaking the reaction for 5 minutes. After removing the aqueous layer with a Pasteur pipette the organic layer is diluted with 1 mL dichloromethane. The organic phase is washed with 1 mL water. Two layers are obtained.
a. Top layer is Aqueous (H20/ H2SO4/NH4CI)
b. Top layer is Organic (CH2Cl2 and product)
c. Bottom layer is Organic (CH2Cl and product)
d. Top layer is Aqueous (H20)
Answer:
Top layer is Organic (CH2Cl2 and product)
Explanation:
In a solvent mixture, there are usually two phases, the organic phase and the aqueous phase.
It is usual that the organic phase is almost always less dense than the aqueous phase hence the organic phase tend to remain on top of the aqueous phase.
Hence, the top layer is expected to be the organic CH2Cl2 and product.
11. An isotope Q has 18 neutrons a mass number of 34. (a) (i) What is an isotope? An isotope is one of two or C (b) Write its electron arrangement. Mass number=34 Number of neutrons=18 Number of Protons = 34-15-16 (c) To which period and group does Q belong? Protors - Electons - Atomic number Period - Group (d) How does Q form its ion?
An isotope is an element with the same atomic number but different mass number due to differences in number of neutrons.
electron configuration is 2,8,6.
Belongs to group 6 and period group 3.
It forms an ion by accepting 2 electrons
A solution has a OH- concentration of 7.7x10-3. What is the pH of this solution?
Answer:
11.9 pH
Explanation:
First, we need to find pOH
To find that, we use the formula -log[OH]
-log[7.7x10^-3] = 2.11351
To find the pH, we'll use this formula: 14 = pH + pOH
14 = pH + 2.11351
Subtract boths sides by 2.11351
14 = pH + 2.11351
-2.11351 -2.11351
pH = 11.88649
Identify the true statements regarding hydrogen bonding. Select all that apply. Group of answer choices Hydrogen bonding occurs when a hydrogen atom is covalently bonded to an N, O, or F atom.
Answer:
True
Explanation:
Hydrogen bonding occurs when hydrogen is covalently bonded to a highly electronegative element such as N, O, or F.
Hydrogen bonding affects several physical properties of molecules in which it occur. For example, the high boiling point of water is caused by intermolecular hydrogen bonding irrespective of the low relative molecular mass of water.
The statement stating the presence of hydrogen bonding between the hydrogen and N, O, and F has been true.
Hydrogen bonding has resulted when the electrostatic interaction has been found in the atoms that have been more electronegative than the Hydrogen atoms.
The electrostatic force helps in attracting the atoms towards the hydrogen and thereby the hydrogen bonding takes place. It has been a weak force present in the molecules. The hydrogen bonding can be easily breakable.
For more information about hydrogen bonding, refer to the link:
https://brainly.com/question/10904296
The elementary reaction 2H2O(g)↽−−⇀2H2(g)+O2(g) proceeds at a certain temperature until the partial pressures of H2O, H2, and O2 reach 0.0900 bar , 0.00100 bar , and 0.00350 bar respectively. What is the value of the equilibrium constant at this temperature?
Answer:
3.89 ×10^-5
Explanation:
Since they are gaseous reactants, we obtain the equilibrium constant from the given partial pressures;
p(H2O) = 0.0900 bar
p(H2) = 0.00100 bar
p(O2) = 0.00350 bar
The equation of the reaction is;2H2O(g)⇄2H2(g)+O2(g)
Kp= p(H2) . p(O2)/p(H2O)
Kp= 0.00100 × 0.00350/0.0900
Kp= 3.89 ×10^-5
A 18.0 L gas cylinder is filled with 6.20 moles of gas. The tank is stored at 33 ∘C . What is the pressure in the tank?
Express your answer to three significant figures and include the appropriate units.
Answer:
8.65 atm
Explanation:
Using ideal law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (Latm/molK)
T = temperature (K)
According to the information given in this question;
V = 18.0 L
n = 6.20 moles
R = 0.0821 Latm/molK
T = 33°C = 33 + 273 = 306K
P = ?
Using PV = nRT
P × 18 = 6.20 × 0.0821 × 306
18P = 155.76
P = 155.76/18
P = 8.65 atm
Carboxylic acid derivatives undergo hydrolysis to make carboxylic acids.
a. True
b. False
Answer:
TRUE
Explanation:
All carboxylic acid derivatives have in common the fact that they undergo hydrolysis (a cleav- age reaction with water) to yield carboxylic acids. with hydroxide ion to yield a carboxylate salt and an alcohol. The carboxylic acid itself is formed when a strong acid is subsequently added to the reaction mixture.
PLS MARK BRAINLIEST
Compounds such as butane and isobutane that have the same molecular formula but differ in the order in which the atoms are connected are called ____________
a. trans isomers
b. cis isomers
c. conventional isomers
d. constitutional isomers
Answer:
One compound, called n-butane, where the prefix n- represents normal, has its four carbon atoms bonded in a continuous chain. The other, called isobutane, has a branched chain. Different compounds that have the same molecular formula are called isomers.
Answer:
d. constitutional isomers
Explanation:
i hope it will help
Calculate [H3O+] for pH 1.86. Steps please.
Answer:
[H₃O⁺] = [H⁺] = 10^-pH = 10⁻¹°⁸⁶ = 0.0138M in [H⁺]
Explanation:
By definition pH = -log[H⁺] => [H⁺] = 10^-pH = 10⁻¹°⁸⁶ = 0.0138M in [H⁺]
Using your calculator ... I am using a TI-30XA scientific calculator.
=> start by entering the number 1.86 => then press the (+/-) function => this will insert a negative symbol => -1.86,=> next find button with "2nd" printed on face (on some calculators the button is in yellow); press this button to change to 'secondary mode',=> find the symbol (10ˣ) ... the button below this symbol is usually the 'log' button, then press it => the answer of interest will show in the display window. => ...Depending on the calculator, the answer may show as 0.0138, or 1.38x10⁻², or 1.38E-2 (=1.38 x 10⁻²). It is the user's job to insert dimensional units into answer of interest => 0.0138M, or 1.38 x 10⁻²M, or 1.38E-2M.
1.38E-2 which is 1.38 x 10⁻².
Which of the following chemical equations depicts a balanced ionic equation?
A. 2OH−+Ca2+−>Ca(OH)2
B. OH−+Ca2+−>Ca(OH)2
C. 2OH−+Ca2+−>2Ca(OH)2
D. OH−+2Ca2+−>Ca(OH)2
Answer:
[tex]{ \sf{A. \: 2OH {}^{ - } _{(aq)} +Ca {}^{2 + } _{(aq)} −>Ca(OH) _{2(s)} }}[/tex]
The chemical equations depict a balanced ionic equation is 2OH−+Ca2+−>Ca(OH)2. option A is correct.
What is the ionic equation?
An ionic equation is a chemical equation in which the electrolytes in an aqueous solution are expressed as dissociated ions. The ions in aqueous solutions are stabilized by ion-dipole interactions with water molecules
Strong acids, strong bases, and soluble ionic compounds (usual salts) exist as dissociated ions in an aqueous solution, and Weak acids and bases and insoluble salts are usually written using their molecular formulas because only a small amount of them dissociates into ions.
Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) → AgCl(s) + Na+(aq) + NO3-(aq) is an ionic equation example.
Therefore, the balanced ionic reaction will be 2OH−+Ca2+−>Ca(OH)2. option A is correct.
Learn more about ionic reactions, here:
https://brainly.com/question/13887096
#SPJ5
What is the biggest cause of change in Earth's systems?
A. Heat
B. Motion
C. Friction
D. Plate tectonics
Answer:
heat
Explanation:
because it's the cause of change
Answer:
heat
Explanation:
because it is a natural factor that causes the change in Earth's system
CH3CH2OH
______ions
in an aqueous solution.
А
forms
B
does not form
Answer:
When ionic compounds dissolve, they break apart into ions which are then able to conduct a current ( conductivity ). ... Many molecular compounds, such as sugar or ethanol, are nonelectrolytes. When these compounds dissolve in water, they do not produce ions.
Explanation:
Ethanol is an organic compound with an alcoholic functional group and is nonelectrolytes. Ethanol (CH₃CH₂OH) does not form ions in an aqueous solution. Thus, option B is correct.
What are nonelectrolytes?Nonelectrolytes are substances that do not dissociate readily to yield ions and also are poor conductors of electricity and heat due to a lack of charged ions.
Ethanol is a nonelectrolyte that does not show conductivity and can be dissolved in water without producing ions. They cannot forms ions upon dissociation as covalent bonds are present.
Instead of ions that have covalent compounds that lack the ability to transfer the electron to conduct the electrical charge. Glucose, ethanol, etc. are some examples of a nonelectrolyte.
Therefore, option B. ethanol does not form ions is the correct blank.
Learn more about nonelectrolytes here:
https://brainly.com/question/14633704
#SPJ2
Describe a NAMED example of a non-equilibrium system with respect to it’s energetic nature and equilibrium status.
Answer:
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of variables (non-equilibrium state variables) that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium.
Explanation:
Can someone teach me step by step how finding the oxidation number in this problem:
Fe in Fe(CIO2)3
Answer:
+3
Explanation:
u see sum of oxidation number in all situations have to be 0
ClO2 =-1
so Fe is +3
What minimum mass of HCl in grams would you need to dissolve a 2.2 g iron bar on a
padlock?
2.8 g is the minimum mass of HCl in grams that would you need to dissolve a 2.2 g iron bar on a padlock.
What is dissolution?When a solute is dissolved in a solvent, a solution is created. Dissolution is the process through which solutes, or dissolved parts, combine to form a solution inside a solvent. In this procedure, the gas, liquid, or solid dissolves inside the original solvent and forms a solution.
In some polymer applications, dissolution is also an issue since it results in swelling, a loss of strength and stiffness, and a change in volume. Whether a chemical process is man-made or natural, dissolution is crucial. Catalysts are tested using dissolution. 2.8 g is the minimum mass of HCl in grams that would you need to dissolve a 2.2 g iron bar on a padlock.
Therefore, 2.8 g is the minimum mass of HCl in grams that would you need to dissolve a 2.2 g iron bar on a padlock.
To know more about dissolution, here:
https://brainly.com/question/23851972
#SPJ2
Hydrocarbons do not dissolve in concentrated sulfuric acid, but methyl benzoate does. Explain this difference and write an equation showing the ions that are produced.
Answer:
See explanation
Explanation:
For a substance to dissolve in another, there must be some sort of interaction between the substances.
Recall that like dissolves like. That is, polar substances dissolve polar substances and non polar substances dissolve nonpolar substances.
Hydrocarbons are nonpolar hence they do not dissolve in polar sulphuric acid. Methyl benzoate is polar hence it dissolve in polar sulphuric acid.
The equation showing the ions is depicted in the image attached to this answer.