The average test score in a science class was 85. If Sue had a score of 55 , where in a normal distribution would her score fall? To the left of the mean. To the right of the mean Her score would not fall on the distribution. Near the center of the distribution. A waitress made $100 in tips on Saturday and $40 in tips on Sunday. It is possible to compare the amount of money earned on Saturday to the amount earned on Sunday using which scale of measurement? interval nominal ordinal ratio Dr. Phil measured his patient's depression using the Syed Depression Inventory. Scores ranged from 1-100 (higher scores indicated greater depressive symptoms). The scale of measurement of each patient's depression score is: nominal interval ratio ordinal If a variable is on a continuous scale of measurement (i.e. interval or ratio scale) and is normally distributed the most appropriate measure of variability is: range median mode standard deviation When a distribution is positively skewed the measures of central tendency are distributed such that The mean is the lowest value on the x-axis, followed by the median, and finally the mode. The mode is the lowest value on the x-axis, followed by the median, and finally the mean. The median is the lowest value on the x-axis, followed by the mode, and finally the mean. The mean, median, and mode are identical. The sum of deviations from the mean for the following data 5,10,5,15,5 set is: 2 0 8 5 QUESTION 13 Which is of the following measures of central tendency should be used when a distribution is skewed? Mode Median Variance Mean Jake wants to identify the peak in a distribution. Which measure of central tendency would be most appropriate? Range Mode Median Mean Jake wants to identify the peak in a distribution. Which measure of central tendency would be most appropriate? Range Mode Median Mean QUESTION 15 Inferential statistics enable you to estimate sample statistics. decide if your research results are important. estimate population parameters. Jeff is analyzing a group of scores. Most of the scores are grouped on the lower end of the distribution with a few scores at the extreme high end of the distribution. Which type of distribution is reflected by these data? Lower Skewed Distribution Positively Skewed Distribution Normal Distribution. Negatively Skewed Distribution is a number that describes a characteristic in the population, whereas is a number that describes a characteristic from a sample of the population. Standard Deviation, mean Parameter, statistic Mean, standard deviation Statistic, parameter

Answers

Answer 1

The average test score in a science class was 85. If Sue had a score of 55, her score would fall to the left of the mean in a normal distribution. A normal distribution is a type of probability distribution where a continuous random variable is distributed.  

The scales of measurement include the nominal scale, ordinal scale, interval scale, and ratio scale. The scale used depends on the data characteristics. The answer is Ratio.Jeff is analyzing a group of scores.

Most of the scores are grouped on the lower end of the distribution, and a few scores are at the extreme high end of the distribution. A distribution that reflects this type of data is a positively skewed distribution. In a positively skewed distribution, the mean is shifted to the right of the median and mode because of the presence of extreme scores or outliers on the right side of the distribution.

A sample statistic provides information about the sample, while a population parameter provides information about the entire population. The parameter is a value that cannot be calculated directly, but the value of the parameter can be estimated by the value of the statistic. The answer is Parameter, statistic.

To know more about population visit:-

https://brainly.com/question/15889243

#SPJ11


Related Questions

Define H:R→R by the rule H(x)=x
2
, for all real numbers x. [5] (a) Is H one-to-one? Prove or give a counterexample. (b) Is H onto? Prove or give a counterexample. (c) Find Inverse of a function defined as below F(x)=log
2

(H(x))

Answers

(a) H is not one-to-one.

(b) H is onto.

(c) The inverse of F(x) = log₂(H(x)) is F^(-1)(x) = 2^(x/2), subject to domain and range restrictions.

(a) To determine if H is one-to-one, we need to check if different inputs yield different outputs. Let's consider two real numbers x₁ and x₂ such that x₁ ≠ x₂.

H(x₁) = x₁^2

H(x₂) = x₂^2

If H(x₁) = H(x₂), then x₁^2 = x₂^2. Taking the square root of both sides, we get |x₁| = |x₂|.

Since |x₁| = |x₂|, it is possible for x₁ ≠ x₂, but |x₁| = |x₂|, which means H is not one-to-one. Therefore, H is not one-to-one.

(b) To determine if H is onto, we need to check if every element in the range of H has a corresponding input in the domain.

Since H(x) = x^2, the range of H consists of all non-negative real numbers (including zero). For any non-negative real number y, we can find x = √y such that H(x) = y. Therefore, H is onto.

(c) Let's find the inverse of the function F(x) = log₂(H(x)).

First, we express H(x) in terms of F(x):

H(x) = x^2

F(x) = log₂(x^2)

To find the inverse, we swap the roles of x and F(x) and solve for x:

x = 2^(F(x)/2)

Therefore, the inverse function is:

F^(-1)(x) = 2^(x/2)

Note: The inverse function can only be defined within the range of F(x), so it is important to consider the domain and range restrictions of F(x) when defining the inverse.

Learn more about real number from the given link:

https://brainly.com/question/17019115

#SPJ11

An American put has underlying asset described by CRR notation S=$21, u=1.4 and d=0.7. This put has strike $21 and expires in three time steps. For return R=1.04, what is the premium of this put?

Answers

The premium of this put is $5.28. A European put with underlying asset S, strike X, expiration T, risk-free rate r, and with R, the risk-neutral probability of up movement, can be priced as per the Black-Scholes model as follows:

C (S, t) = SN (d1) - Ke(-rT)N (d2) where d1= [log(S/X) + (r + σ2/2)(T - t)]/ σ√(T - t) and d2= d1 - σ√(T - t),σ is the standard deviation of the underlying asset returns. Similarly, the price of an American put option can be found using a binomial model, where the value of the option is calculated at every step. So, for the given American put option with underlying asset described by CRR notation S=$21, u=1.4 and d=0.7 and expiration in three time steps, we will have a binomial tree with three time steps as shown below:

Binomial Tree Now, let's calculate the premium for the American put option. At the third time step, when the stock price is $10.08, the put option is in-the-money, and the holder of the put option can exercise it and sell the stock at the strike price of $21. So, the premium at this node will be the maximum of the difference between the strike price and the stock price and zero, which is $21 - $10.08 = $10.92.

At the second time step, we will calculate the option price by discounting the expected future payoff by the risk-free rate. The probability of an up movement is R = 1.04, so the probability of a down movement is 1 - R = 0.96. For the node where the stock price is $14.70, the expected future payoff is

[R*$10.92 + (1 - R)*$0]/(1 + r)

= $5.25.

Similarly, for the node where the stock price is $7.35, the expected future payoff is [R*$0 + (1 - R)*$13.65]/(1 + r) = $6.63.

At the first time step, the expected future payoff is [R*$5.25 + (1 - R)*$6.63]/(1 + r) = $5.28. This is the premium of the American put option. Therefore, the premium of this put is $5.28.

To know more about Future payoff visit-

brainly.com/question/30924933

#SPJ11

College studenta were asked to rate the quality of dorm food on a scale from 0-10. What percentage of students rated the food 3 or lower? Scores were reported as:
3;2;8;6;2;1;1;5;2;9;1;3;
Round your answers to the nearest hundredths.
Percentage of students that rated the food 3 or lower?

Answers

Based on the given scores, the percentage of students who rated the food 3 or lower is 30.77%

To calculate the percentage Formula. of students who rated the food 3 or lower, we need to determine the number of students who gave a score of 3 or lower and divide it by the total number of students. From the given scores, we can see that there are four students who rated the food 3 or lower (scores 3, 2, 2, and 1). Since there are a total of 13 students, we divide 4 by 13 and multiply by 100 to get the percentage. The calculation is (4/13) * 100 ≈ 30.77%. Therefore, approximately 30.77% of students rated the dorm food 3 or lower.

Learn more about percentage Formula here:

https://brainly.com/question/1466006

#SPJ11

Angle RST is a right angle. Angle RSU has a measure of 25°.

Lines R S and S T connect to form a right angle. Another line extends from point S to point U. Angle R S U is 25 degrees.
What is the measure of angle TSU?

25°
45°
65°
75°

Answers

Therefore, angle SUT is a right angle. Hence, its measure is 90 degrees.

Given that angle RST is a right angle. We know that a right angle is equal to 90 degrees. Therefore, we can write angle RST as m ∠RST = 90 degrees.It is also given that angle RSU has a measure of 25 degrees. We can write this as m ∠RSU = 25 degrees. Now, let's consider angle STU.

We know that the sum of the angles in a triangle is equal to 180 degrees.

Therefore, we can write:

m ∠RST + m ∠RSU + m ∠STU = 180 degrees.

Substituting the values we have, we get:

90 degrees + 25 degrees + m ∠STU = 180 degrees

115 degrees + m ∠STU = 180 degrees

∠STU = 180 degrees - 115 degrees ∠STU = 65 degrees

Now we know that angle STU has a measure of 65 degrees.Now, we need to find the measure of angle SUT. We know that the sum of angles in a triangle is equal to 180 degrees.

Therefore, we can write:

m ∠STU + m ∠SUT + m ∠RSU = 180 degrees

Substituting the values we have, we get:

65 degrees + m ∠SUT + 25 degrees = 180 degrees

90 degrees + m ∠SUT = 180 degrees

∠SUT = 180 degrees - 90 degrees

∠SUT = 90 degrees

For such more question on triangle

https://brainly.com/question/1058720

#SPJ8

Consider a group of 100 students. Out of them suppose 30 are math majors, 40 are engineering majors, and 10 are both math and engineering majors. If a student is selected randomly, a). what is the probability that the student is from other majors? b) what is the probability that the student majors ONLY Math? c) what is the probability that the student is either a Math or an Engineering major?

Answers

The probability that the student is from other majors is 0.9. The probability that the student majors only Math is 0.2. The probability that the student is either a Math or an Engineering major is 0.6.

Given a group of 100 students, 30 are math majors, 40 are engineering majors, and 10 are both math and engineering majors. We can represent this information using a Venn diagram as shown below:

Let A be the event that a student is a math major and B be the event that a student is an engineering major. Then, we have:

P(A) = 30/100 = 0.3 (probability that a student is a math major)

P(B) = 40/100 = 0.4 (probability that a student is an engineering major)

P(A ∩ B) = 10/100 = 0.1 (probability that a student is both a math and engineering major)

a) Probability that the student is from other majors:

P(not A ∩ not B) = P[(not A) U (not B)] = 1 - P(A ∩ B) = 1 - 0.1 = 0.9

So, the probability that the student is from other majors is 0.9.

b) Probability that the student majors ONLY Math:

P(A and not B) = P(A) - P(A ∩ B) = 0.3 - 0.1 = 0.2

So, the probability that the student majors ONLY Math is 0.2.

c) Probability that the student is either a Math or an Engineering major:

P(A U B) = P(A) + P(B) - P(A ∩ B) = 0.3 + 0.4 - 0.1 = 0.6

So, the probability that the student is either a Math or an Engineering major is 0.6.

Learn more about probability

https://brainly.com/question/31828911

#SPJ11

Evaluate the indefinite integral.
1. ∫sin x /cos^2x dx
2. ∫ sec^3 x tan x dx

Answers

The results for the given  indefinite integral are-

a) ∫[tex]sin x /cos^2x dx = 1/cos x + C[/tex]

b)  ∫[tex]sec^3 x tan x dx = -1/2sec^2 x + C[/tex]

The given integrals are as follows:

1. ∫[tex]sin x /cos^2x dx = 1/cos x + C[/tex]

We can substitute u = cos x to get the integral in terms of u.

We get:

du/dx = -sin x dx

Multiplying numerator and denominator by -1, we get:

∫-du/u2= 1/u + C

= 1/cos x + C

2. ∫[tex]sec^3 x tan x dx = -1/2sec^2 x + C[/tex]

We can use the substitution, u = sec x, which means:

du/dx = sec x tan x dx

Thus, our integral becomes:

∫(1/u3)du

Now, we can integrate it using the power rule of integration to get:-

1/2u2 + C

Substituting the value of u, we get:-

1/2sec2 x + C

Know more about the indefinite integral

https://brainly.com/question/30404875

#SPJ11

Calculate the mean of this sample data.
x
ˉ
= (Round to three decimal places as needed.) o. Calculate the standard deviation of this sample data. s=( Round to three decimal places as needed.)

Answers

To calculate the mean and standard deviation of the given data set, we need the values in the data set. However, there is no data set given in the question. Therefore, I cannot provide the exact answer to the question. However, I will explain how to calculate the mean and standard deviation of a data set, and you can use the steps provided to solve the problem once you have the data set.

Let[tex]x1, x2, x3, ...., xn[/tex] be a set of n observations, and let x ˉ be the mean of the sample data. Then, the formula to calculate the sample mean is given by:

Mean,[tex]x ˉ = (x1 + x2 + x3 + ..... + xn) / n[/tex] The standard deviation of the sample data can be calculated using the formula given below:

Standard deviation[tex], s = √Σ(x - x ˉ)² / (n - 1)[/tex]where x is the individual observation in the data set, x ˉ is the mean of the sample data, and n is the number of observations in the sample. The above formulas hold true only for sample data. If we have population data, the formulas will be slightly different.

To know more about standard visit:

https://brainly.com/question/31979065

#SPJ11

Using the master theorem read off the Θ order of the following recurrences: (a) T(n)=2T(n/2)+n
2
(b) T(n)=2T(n/2)+n (c) T(n)=4T(n/2)+n (d) T(n)=T(n/4)+1

Answers

1. T(n) = Θ(n)

2. T(n) = Θ(n)

3. T(n) = Θ(n²)

4. T(n) = Θ(1)

The master theorem is an algorithmic approach for solving recurrence relations (both divide and conquer and recursive equations). Let us use the master theorem to read off the Θ order of the following recurrences:

(a) T(n) = 2T(n/2) + n²:

Using the Master theorem: a = 2, b = 2 and f(n) = n² so

logba = log2/ log2 = 1 = c(n²) = Θ(nlogba) = Θ(n)

Therefore T(n) = Θ(nlogba) = Θ(nlog₂2) = Θ(n)

(b) T(n) = 2T(n/2) + n:

Using the Master theorem: a = 2, b = 2 and f(n) = n so

logba = log2/ log2 = 1 = c(n) = Θ(nlogba) = Θ(n)

Therefore T(n) = Θ(nlogba) = Θ(nlog₂2) = Θ(n)

(c) T(n) = 4T(n/2) + n:

Using the Master theorem: a = 4, b = 2 and f(n) = n so

logba = log4/ log2 = 2 = c(n²) = Θ(n²)

Therefore T(n) = Θ(nclogba) = Θ(n²log₂4) = Θ(n²)

(d) T(n) = T(n/4) + 1:

Using the Master theorem: a = 1, b = 4 and f(n) = 1 so logba = log4/ log1 = undefined

Therefore T(n) = Θ(nclogba) = Θ(n⁰) = Θ(1)

Learn more about recurrence:

https://brainly.com/question/31789425

#SPJ11

A bag contains six gold coins and four silver coins. You draw five coins at random and place them in order on the table. Given that no coin is next to a coin of the same colour, what is the probability that the first coin is gold? Select one: a. 2/3 b. 1/3 c. 3/5 d. 1/2 e. None of the other choices

Answers

The probability that the first coin drawn is gold, given that no coin is next to a coin of the same color. The answer is e. None of the other choices (7/9).

Let's consider the possible scenarios for the first coin:

If the first coin drawn is gold, there are five remaining coins, four of which are silver.

If the first coin drawn is silver, there are five remaining coins, three of which are gold.

Since we want to ensure that no two coins of the same color are adjacent, the second coin must be of the opposite color of the first coin.

In the first scenario, if the first coin is gold, the second coin must be silver. The probability of drawing a silver coin as the second coin is 4/9 since there are four silver coins remaining out of a total of nine coins.

In the second scenario, if the first coin is silver, the second coin must be gold. The probability of drawing a gold coin as the second coin is 3/9 since there are three gold coins remaining out of a total of nine coins.

Therefore, the overall probability that the first coin is gold is (4/9 + 3/9) = 7/9.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

A 24 - ft ladder leans against a building so that the angle between the ground and the ladder is 63

. How high does the ladder reach on the building? __________ft. Give your answer accurate to one decimal place.

Answers

The height the ladder reaches on the building is approximately 21.6 ft

The height the ladder reaches on the building can be found using trigonometry. We know that the ladder forms a right triangle with the ground and the building. The ladder acts as the hypotenuse of the triangle, and the angle between the ground and the ladder is given as 63 degrees.

Using the trigonometric function sine (sin), we can determine the height of the ladder on the building. The sine of an angle is equal to the ratio of the length of the side opposite the angle to the length of the hypotenuse. In this case, the height represents the side opposite the angle, and the ladder's length represents the hypotenuse.

Using the sine function:

sin(63 degrees) = height / 24 ft

To find the height, we can rearrange the equation:

height = 24 ft * sin(63 degrees)

Calculating this value, we find that the height the ladder reaches on the building is approximately 21.6 ft (rounded to one decimal place). Therefore, the ladder reaches a height of 21.6 ft on the building.

Learn more about trigonometry here:

brainly.com/question/11016599

#SPJ11

Given the data below are the number of students in each age group. Based on the frequency distribution above, find the relative frequency for the class with lower class limit 27. Give your answer as a percent, rounded to one decimal place. Relative Frequency =

Answers

The task requires finding the relative frequency for the class with a lower class limit of 27, based on the given frequency distribution.

To find the relative frequency for a specific class in a frequency distribution, we divide the frequency of that class by the total number of observations. The relative frequency is often expressed as a percentage.

Given the data is not provided, it is not possible to determine the frequency of the class with a lower class limit of 27 or the total number of observations. Without these values, we cannot calculate the relative frequency.

Calculating the relative frequency allows us to understand the proportion of observations within a specific class relative to the total number of observations. However, in this case, since the data is not provided, we are unable to calculate the relative frequency for the specified class.

It is essential to have access to the actual data to perform the necessary calculations accurately and determine the relative frequency for a specific class.

Learn more about relative frequency : brainly.com/question/3857836

#SPJ11

how to calculate p value from mean and standard deviation

Answers

To calculate the p-value from the mean and standard deviation, you need to perform a statistical test, such as a t-test or z-test, depending on the sample size and whether the population standard deviation is known.

The p-value represents the probability of obtaining the observed sample mean or a more extreme value, assuming the null hypothesis is true. The p-value can be calculated using statistical software or by using the appropriate formula and a standard normal distribution table.

The calculation of the p-value depends on the specific statistical test being used. In general, for large sample sizes (typically greater than 30) or when the population standard deviation is known, a z-test can be used. For smaller sample sizes or when the population standard deviation is unknown, a t-test is more appropriate.

To calculate the p-value for a z-test, you would first calculate the test statistic, which is the standardized value of the sample mean using the formula:

z = (x - μ) / (σ / √n),

where x is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size. Then, you can look up the corresponding p-value from a standard normal distribution table or use statistical software to obtain the probability.

For a t-test, you would calculate the t-statistic using the formula:

t = (x - μ) / (s / √n),

where s is the sample standard deviation. The degrees of freedom for the t-distribution would depend on the sample size. Again, you can obtain the p-value by looking up the corresponding value from a t-distribution table or using statistical software.

It's important to note that calculating the p-value requires knowledge of the null hypothesis, alternative hypothesis, and the specific test being conducted. Statistical software, such as R or Python, can provide more accurate and efficient calculations of p-values for various statistical tests.

Learn more about null hypothesis here:

https://brainly.com/question/31816995

#SPJ11

A cocionuous random yariatie x that can assume values between x=1 and x=5 has a densty function ghen by f(i) =
4
1

(a) Show trat the ares under the curve is equal io 1 . (b) Find P(4 4
5

(
4
1

)dx=∣
4
5

=1 0. ∫
0
5

(
4
1

)dx+
4
5

=1 c. ∫(
4
1

)⋅dx=m
m
m

=1 0. ∫
i
1

(
4
1

)dx




1
1

=1

Answers

The mean value of the function ism = 4/1 - 4/5 = 0.8.

(a) The area under the curve is equal to 1. Solution:We need to calculate the area under the curve for the function f(x) which has values between 1 and 5. The curve is shown below:curve between 1 and 5The area under the curve can be found by integrating the function between 1 and 5 i.e. 5∫1f(x)dx.Using the given function f(x), we get4/5 = 0.8

Therefore, the area under the curve is 0.8 and the area under the curve is equal to 1. Hence, proved.(

b) P(4/5 < X < 4/1). Solution:We need to find the probability of a continuous random variable X, which can assume values between 1 and 5, having a value between 4/5 and 4/1.P(4/5 < X < 4/1) is the probability that X is between 4/5 and 4/1.Using the given function f(x), we get4/5 = 0.8The probability is, P(4/5 < X < 4/1) = 0.2.

(c) Mean value of the function.

We need to find the mean value of the function f(x), which is given by

m = ∫5f(x)dx/5 - ∫1f(x)dx/1

We know that,

∫5f(x)dx = 4/1

Therefore, the mean value of the function is

m = 4/1 - ∫1f(x)dx/1

We also know that, ∫1f(x)dx = 4/5

To know more about  mean value  visit:-

https://brainly.com/question/14882017

#SPJ11

1. Let Y
1

,Y
2

,Y
3

,Y
4

,Y
5

be a random sample of size 5 from a standard normal population. Find the moment generating function of the statistic: X=2Y
1
2

+Y
2
2

+3Y
3
2

+Y
4
2

+4Y
5
2

Answers

The probability distribution of random variables Y1,Y2,Y3,Y4,Y5 is normal distribution with mean 0 and variance

1. So, we can write the moment generating function (MGF) of Yi as E(e^tYi) = 1/√(2π) * ∫e^(ti)y_i * e^(-y_i^2/2) dy_i.Now, the moment generating function of X can be calculated by substituting the above values for Y1, Y2, Y3, Y4, and Y5, and then applying the properties of MGF. X=2Y1^2+Y2^2+3Y3^2+Y4^2+4Y5^2Here, we can use the following property of the moment generating function:If X = a1Y1 + a2Y2 + ... + anYn, where Y1, Y2, ..., Yn are independent random variables and ai are constants, then MGF of X is given by M_X(t) = ∏M_Yi(a_it).

Applying this property, we can write MGF of X as:M_X(t) = M_Y1(2t) * M_Y2(t) * M_Y3(√3t) * M_Y4(t) * M_Y5(2t)Therefore, MGF of X is given by:Answer more than 100 words:From the above explanation, we have calculated the moment generating function (MGF) of the given statistic X as:M_X(t) = M_Y1(2t) * M_Y2(t) * M_Y3(√3t) * M_Y4(t) * M_Y5(2t) where M_Yi(t) is the moment generating function of Yi, which is equal to 1/√(2π) * ∫e^(ti)y_i * e^(-y_i^2/2) dy_i. Now, we can substitute the value of Yi in this formula to get M_Yi(t) as M_Yi(t) = 1/√(2π) * ∫e^(ti)y_i * e^(-y_i^2/2) dy_i = e^(t^2/2). Therefore, we get M_X(t) = e^(8t^2) * e^(t^2/2) * e^(27t^2/2) * e^(t^2/2) * e^(32t^2) = e^(73t^2/2).Hence, the moment generating function of the given statistic X is e^(73t^2/2).

In this question, we have used the moment generating function (MGF) to find the MGF of a given statistic X. We have applied the property of MGF to calculate the MGF of X in terms of the MGF of Y1, Y2, Y3, Y4, and Y5. We have then substituted the formula for MGF of Yi to get the final expression for MGF of X. The final answer is e^(73t^2/2).

To know more about  probability visit

https://brainly.com/question/31828911

#SPJ11

Tourists stop at an information desk at a rate of one every 15 minutes, and answering their questions takes an average of 3 minutes each. There are 7 employees on duty. If a tourist isn't served immediately, how long on average would the tourist have to wait for service?

A. 12.5 minutes

b. 10 minutes

c. 5 minutes

d. 0.018 minutes

Answers

On average, a tourist would have to wait for approximately 12.5 minutes for service (option A) if they are not served immediately at the information desk.

To calculate the average waiting time, we need to use the queuing theory formula for the average waiting time in an M/M/c queuing system. In this case, we have a Poisson arrival process with an arrival rate of 1 customer every 15 minutes and an exponential service time with an average of 3 minutes.
The utilization factor, ρ, can be calculated as the arrival rate divided by the service rate per server multiplied by the number of servers. In this case, we have 7 servers.
ρ = (1/15) / (1/3 * 7) = 1/35
Using the formula for the average waiting time, which is given by:
W = ρ / (c * (1 - ρ)) * (1 / λ)
where c is the number of servers and λ is the arrival rate, we substitute the values:
W = (1/35) / (7 * (1 - 1/35)) * (1 / (1/15))
W ≈ 12.5 minutes
Therefore, on average, a tourist would have to wait for approximately 12.5 minutes for service, or option A.

learn more about average here

https://brainly.com/question/24057012



#SPJ11

A true-false exam has 48 questions and an answerer has to choose the correct alternative. Matt has not prepared to the exam at all, and he just guesses randomly on each question. Lisa has prepared to the exam better and her probability of answering a question correctly is 43. A passing score is 30 or more correct answers. Compare the probability that Lisa passes the exam with the probability that Matt passes is. Use normal approximation.

Answers

The probability that Lisa passes the exam is significantly higher than the probability that Matt passes. Using the normal approximation, we have calculated these probabilities based on their respective mean and standard deviation.

Since Matt guesses randomly on each question, the probability of him answering a question correctly is 1/2 (since there are two alternatives: true or false). The number of correct answers for Matt follows a binomial distribution with parameters n = 48 (number of questions) and p = 1/2 (probability of success). To calculate the probability that Matt passes the exam (30 or more correct answers), we can use the normal approximation to the binomial distribution. We approximate the binomial distribution as a normal distribution with mean μ = np and standard deviation σ = [tex]\sqrt{(np(1-p))}[/tex]. In this case, μ = 48 * 1/2 = 24 and σ =[tex]\sqrt{(48 * 1/2 * 1/2)}[/tex] = 3.464. We then calculate the z-score for the passing score of 30 (z = (30 - μ) / σ) and use the standard normal distribution to find the probability of z > 30.

For Lisa:

Since Lisa has prepared for the exam and her probability of answering a question correctly is 43/100, the number of correct answers for Lisa follows a binomial distribution with parameters n = 48 and p = 43/100. Similar to the calculation for Matt, we can use the normal approximation to calculate the probability that Lisa passes the exam. We calculate the mean μ = 48 * 43/100 = 20.64 and the standard deviation σ = sqrt(48 * 43/100 * (1 - 43/100)) = 4.189. We then calculate the z-score for the passing score of 30 and use the standard normal distribution to find the probability of z > 30.

Comparing the probabilities:

By calculating the probabilities using the standard normal distribution, we find that the probability of Lisa passing the exam is significantly higher than the probability of Matt passing. This is because Lisa has a higher probability of answering a question correctly compared to Matt, which gives her a better chance of obtaining a passing score.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

The cartesian coordinates of a point in the xy plane are x=−3.51 m,y=−2.54 m. Find the distance r from the point to the origin. Answer in units of m.

Answers

The distance from the point (-3.51 m, -2.54 m) to the origin is approximately 4.33 m.

To find the distance r from a point to the origin in the xy-plane, we can use the Pythagorean theorem.

Given the cartesian coordinates of the point:

x = -3.51 m

y = -2.54 m

The distance r from the point to the origin can be calculated as:

r = [tex]√(x^2 + y^2)[/tex]

Substituting the given values:

r = √[tex]((-3.51)^2 + (-2.54)^2)[/tex]

r = √(12.3201 + 6.4516)

r = √18.7717

r ≈ 4.33 m

Therefore, the distance from the point (-3.51 m, -2.54 m) to the origin is approximately 4.33 m.

Learn more about Pythagorean theorem here:

https://brainly.com/question/14930619

#SPJ11

Assume the +x axis is to the right, the +y axis is up, and the +z axis is out.) E= N/C What approximations did you make, if any? Check all that apply. Use approximate formula for electric field of a charged spherical shell. Assume distance to observation location is small compared to length of rod Neglect polarization of rod Neglect polarization of balloons (b) Next a proton is placed at that same location (marked by the x ). What is the force acting on the proton? F=

Answers

Approximate formula for electric field of a charged spherical shell: This suggests that the electric field was calculated assuming the rod behaves like a uniformly charged spherical shell.

This approximation simplifies the calculation by considering the rod as a collection of individual point charges on its surface.

2. Neglecting polarization of the rod: This implies that the effect of the alignment of charges within the rod due to an external electric field is ignored. Polarization can occur when the charges within the rod slightly shift to create an induced electric field that opposes the external field. However, in this case, the polarization is neglected, assuming its impact is negligible.

3. Neglecting polarization of balloons: Similar to the previous approximation, this neglects the effect of polarization in the balloons caused by the external electric field. Balloons, being dielectric materials, can experience polarization due to the redistribution of charges within them. However, in this case, that effect is ignored.

When a proton is placed at the location marked by "x," it will experience a force due to the electric field. The force acting on a charged particle in an electric field is given by the equation F = q E, where q is the charge of the particle and E is the electric field. In this case,

since the electric field is given as E = N/C, and the charge of a proton is q = 1.6 × 10^-19 C, the force acting on the proton can be calculated by multiplying the charge of the proton with the magnitude of the electric field. The direction of the force will be in the same direction as the electric field, which, according to the given coordinate system, is along the positive x-axis (to the right).

Learn more about proton here:

brainly.com/question/1252435

#SPJ11

If the determinant of a 5×5 matrix A is det(A)=2, and the matrix B is obtained from A by multiplying the third row by 4 , then det(B)=

Answers

When the determinant of matrix B is also 2.

When a scalar multiple of a row is multiplied by a matrix, the determinant of the resulting matrix is also multiplied by that scalar.

Given that the determinant of matrix A is det(A) = 2, and matrix B is obtained from A by multiplying the third row by 4, we can determine the determinant of B.

Let's denote the original matrix A as A₀ and the modified matrix B as B.

Multiplying the third row of A₀ by 4 yields matrix B. However, this operation does not affect the determinant of A₀, so det(B) = det(A₀).

Therefore, det(B) = det(A₀) = 2.

Hence, the determinant of matrix B is also 2.

Learn more about determinant of matrix from the given link!

https://brainly.in/question/1392012

#SPJ11

Let X be a linear space on field F of finite dimension n. Then X≅F n
. Proof. Let (x 1

,x 2

,…,x n

) be basis of X. Then ∀x∈X have unique x=∑ i=1
n

μ i

x i

,μ i

∈ F∀i. Define f:X→F n
such that f(x)=(μ 1

,μ 2

,…,μ n

). We can show that f is isomorphism.

Answers

f is a linear transformation that is both injective and surjective, it is an isomorphism between X and F^n. Therefore, we have X ≅ F^n as desired.

To prove that X is isomorphic to F^n, where X is a finite-dimensional linear space over the field F of dimension n, we need to show that there exists an isomorphism between X and F^n.

Let (x_1, x_2, ..., x_n) be a basis of X. Any element x in X can be uniquely expressed as a linear combination of the basis vectors:

x = ∑(i=1 to n) μ_i * x_i, where μ_i ∈ F for all i.

Now, we define a function f: X -> F^n as follows:

f(x) = (μ_1, μ_2, ..., μ_n)

We claim that f is an isomorphism.

First, we need to show that f is well-defined, meaning that the mapping is independent of the choice of representation for x. Suppose x can be represented as a different linear combination of the basis vectors:

x = ∑(i=1 to n) ν_i * x_i, where ν_i ∈ F for all i.

Since both representations are linear combinations of the same basis vectors, we have:

∑(i=1 to n) μ_i * x_i = ∑(i=1 to n) ν_i * x_i

By the uniqueness of the representation, it follows that μ_i = ν_i for all i. Therefore, the function f(x) = (μ_1, μ_2, ..., μ_n) is well-defined.

Next, we need to show that f is a linear transformation. Let x, y ∈ X and α ∈ F. We have:

f(x + αy) = (μ_1 + αν_1, μ_2 + αν_2, ..., μ_n + αν_n)

         = (μ_1, μ_2, ..., μ_n) + α(ν_1, ν_2, ..., ν_n)

         = f(x) + αf(y)

This shows that f preserves vector addition and scalar multiplication, making it a linear transformation.

To prove that f is an isomorphism, we need to show that it is both injective and surjective.

Injectivity: Suppose f(x) = f(y), where x, y ∈ X. This implies (μ_1, μ_2, ..., μ_n) = (ν_1, ν_2, ..., ν_n), which further implies μ_i = ν_i for all i. Thus, x and y have the same unique representation in terms of the basis vectors, leading to x = y. Hence, f is injective.

Surjectivity: Let (a_1, a_2, ..., a_n) be an arbitrary element of F^n. We can construct an element x ∈ X such that f(x) = (a_1, a_2, ..., a_n) by choosing x = ∑(i=1 to n) a_i * x_i. This guarantees that f is surjective.

Since f is a linear transformation that is both injective and surjective, it is an isomorphism between X and F^n. Therefore, we have X ≅ F^n as desired.

Learn more about isomorphism here

https://brainly.com/question/30580081

#SPJ11

The continuous function f is defined on the interval -5

Answers

f'(x): Negative Zero Negative Zero Zero Zero Positive Positive

f''(x): Positive Negative Negative Zero Zero Positive Zero

How do we  calculate?

The continuous function f is defined on the closed interval [−5,5] and we know that the graph of f consists of a parabola and two line segments.

Let g be a function such that g′(x)=f(x).The given figure is as follows: the function f is continuous on the closed interval [-5,5].

Where : f'(x)Negative Zero Negative Zero Zero Zero Positive Positive

: f''(x)Positive Negative Negative Zero Zero Positive Zero__

f'(x)  is the slope of f(x) function.

When x < -3, f(x) is decreasing since f'(x) is negative.

When -3 < x < -1, f(x) is constant since f'(x) is zero.

When -1 < x < 2, f(x) is decreasing since f'(x) is negative.

When x > 2, f(x) is increasing since f'(x) is positive. f''(x) tells us how much f'(x) is changing as x increases.

When x < -3, f'(x) is increasing since f''(x) is positive.

When -3 < x < -1, f'(x) is decreasing since f''(x) is negative

Learn more about slope at:

https://brainly.com/question/3493733

#SPJ1

#complete question:

The continuous function f is defined on the closed interval [−5,5]. The graph of f consists of a parabola and two line segments, as shown in the figure above. Let g be a function such that g′(x)=f(x) (a) Fill in the missing entries in the table below to describe the behavior of f′ and f′′. Indicate Positive, Negative, or 0 . Give reasons for your answers.

Select "Yes" or "No" to indicate whether the ordered pair is on the graph of the function f(x)=−16x+1.



Ordered Pairs Yes No
(0,−16)
Yes – begin ordered pair 0 comma negative 16 end ordered pair
No – begin ordered pair 0 comma negative 16 end ordered pair
(−1,−1)
Yes – begin ordered pair negative 1 comma negative 1 end ordered pair
No – begin ordered pair negative 1 comma negative 1 end ordered pair
(1,256)
Yes – begin ordered pair 1 comma 256 end ordered pair
No – begin ordered pair 1 comma 256 end ordered pair

Answers

Answer:
(0, -16): No

(-1, -1): Yes

(1, 256): No

Suppose that lim
n→[infinity]

∣s
n

∣=0. Prove that lim
n→[infinity]

s
n

=0.

Answers

To prove that lim (n → ∞) |sn| = 0 implies lim (n → ∞) sn = 0, we will show that if the absolute value of a sequence converges to 0, then the sequence itself also converges to 0.

Let {sn} be a sequence such that lim (n → ∞) |sn| = 0. This means that for any ε > 0, there exists a positive integer N such that |sn| < ε for all n ≥ N. We want to show that lim (n → ∞) sn = 0.

Given ε > 0, we can choose the same N as before, such that |sn| < ε for all n ≥ N. Now, consider the difference between sn and 0, i.e., |sn - 0| = |sn|. Since |sn| < ε for all n ≥ N, it follows that |sn - 0| = |sn| < ε for all n ≥ N.

This shows that for any ε > 0, there exists a positive integer N such that |sn - 0| < ε for all n ≥ N, which is the definition of lim (n → ∞) sn = 0. Therefore, we have proven that if lim (n → ∞) |sn| = 0, then lim (n → ∞) sn = 0.

In conclusion, if the absolute value of a sequence converges to 0, then the sequence itself also converges to 0.

Learn more about converges here:

https://brainly.com/question/29258536

#SPJ11

Write an integrated program in Fortran to calculate the value of the equation (y) using the if arithmetic expression from the following relationship. y=x+7
y=x
2



x≥0
x<0

Answers

The Fortran program calculates the value of the equation y based on the conditions: y = x + 7 if x is greater than or equal to 0, and y = x^2 if x is less than 0.

Here's an example of an integrated Fortran program that calculates the value of the equation y based on the given conditions:

program EquationCalculation

   implicit none

   real :: x, y

   ! Read the value of x from the user

   print *, "Enter the value of x:"

   read *, x

   ! Calculate the value of y based on the given conditions

   if (x >= 0.0) then

       y = x + 7.0

   else

       y = x**2

   end if

   ! Display the result

   print *, "The value of y is:", y

end program EquationCalculation

In this program, the user is prompted to enter the value of x. Depending on the value of x, the program uses the if-else statement to calculate the value of y according to the given conditions. Finally, the calculated value of y is displayed on the screen.

To learn more about Fortran visit : https://brainly.com/question/29590826

#SPJ11

I want to import a matrix and then calculate the determinant using eliminations but keep getting this error. Where is the problem and how can it be fixed?

Answers

When importing a matrix and calculating the determinant using eliminations, it is important to ensure that the matrix is correctly formatted. If you are receiving an error, there may be a formatting issue with the matrix. Here are some steps to check and fix the issue:

Step 1: Check the matrix dimensions. Make sure the matrix is square, meaning that it has an equal number of rows and columns. If it is not square, you will not be able to calculate the determinant.

Step 2: Check the syntax of the matrix. Make sure the matrix is formatted correctly using brackets or parentheses. For example, if you are using MATLAB, the matrix should be entered in the following format: matrix = [1 2 3; 4 5 6; 7 8 9]

Step 3: Check for any missing or extra elements in the matrix. Make sure that each row and column of the matrix has the same number of elements. If there are any missing or extra elements, you will not be able to calculate the determinant.

Step 4: Check the syntax of the determinant calculation. Make sure that you are using the correct syntax to calculate the determinant. In MATLAB, you can use the "det" function to calculate the determinant of a matrix. For example, if you have a matrix called "A", you can calculate the determinant using the following syntax: det(A)If you follow these steps and still receive an error, try searching for the specific error message to see if there are any other solutions to the problem.

Learn more about determinant:

https://brainly.com/question/14325450

#SPJ11

Raising a number in scientific notation to a power is easy: (5×10
5
)
2
=(5)
2
×(10
5
)
2
=5×5×10
5
×10
5
=25×10
(5×2)
=25×10
10
=2.5×10
11
Keeping this in mind, what is the volume of the sun in km? km
3
? The radius of the sun is about 7×10
5
km, and the volume of at aphere is 4/3× Pix R
3
. (Use 3.14 for Pi, and onter your answer with two decimal places). km
3
What is the average density of the Sun? Density = mass / volume. The mass of the sun is 2.0x10
30
kg. kg
km

km
3

Answers

The average density of the sun is approximately 1.39 × 10^3 kg/m^3. To find the volume of the sun, we can use the formula for the volume of a sphere.

V = (4/3) * π * R^3

Given that the radius of the sun is approximately 7 × 10^5 km, we can substitute this value into the formula:

V = (4/3) * 3.14 * (7 × 10^5)^3

 ≈ (4/3) * 3.14 * 343 × 10^15

 ≈ 1441 × 10^15 km^3

 ≈ 1.44 × 10^18 km^3

Therefore, the volume of the sun is approximately 1.44 × 10^18 km^3.

To find the average density of the sun, we can divide the mass of the sun by its volume:

Density = mass / volume

Given that the mass of the sun is 2.0 × 10^30 kg and the volume is 1.44 × 10^18 km^3 (which can be converted to m^3), we can calculate the average density:

Density = (2.0 × 10^30 kg) / (1.44 × 10^18 × (10^3)^3 m^3)

       = (2.0 × 10^30 kg) / (1.44 × 10^18 × 10^9 m^3)

       = (2.0 × 10^30 kg) / (1.44 × 10^27 m^3)

       ≈ 1.39 × 10^3 kg/m^3

Therefore, the average density of the sun is approximately 1.39 × 10^3 kg/m^3.

Learn more about volume here:

https://brainly.com/question/21623450

#SPJ11

Consider f(n)=3n
2
+2n−1, mathematically show that f(n) is O(n
2
),Ω(n
2
), and Θ(n
2
).

Answers

For the given condition f(n) = 3n^2 + 2n - 1 is Θ(n^2) is True.

To show that f(n) = 3n^2 + 2n - 1 is O(n^2), Ω(n^2), and Θ(n^2), we need to establish upper and lower bounds for f(n) using the Big O, Big Omega, and Big Theta notations.

1. f(n) is O(n^2):

To prove that f(n) is O(n^2), we need to find constants c and k such that f(n) ≤ c * n^2 for all n > k.

Let's consider the expression f(n) = 3n^2 + 2n - 1. We can see that all terms except the highest power of n (n^2) are negligible when n is sufficiently large. Therefore, we can ignore 2n - 1 and only focus on 3n^2.

For all n > 1, we have:

3n^2 ≤ 3n^2 + 2n - 1 ≤ 3n^2 + 2n^2 = 5n^2

Here, we can take c = 5 and k = 1. So, we have f(n) ≤ c * n^2 for all n > k, satisfying the definition of f(n) being O(n^2).

2. f(n) is Ω(n^2):

To prove that f(n) is Ω(n^2), we need to find constants c and k such that f(n) ≥ c * n^2 for all n > k.

Again, considering the expression f(n) = 3n^2 + 2n - 1, we can focus on 3n^2 as the dominant term.

For all n > 1, we have:

3n^2 + 2n - 1 ≥ 3n^2

Here, we can take c = 3 and k = 1. So, we have f(n) ≥ c * n^2 for all n > k, satisfying the definition of f(n) being Ω(n^2).

3.f(n) is Θ(n^2):

To prove that f(n) is Θ(n^2), we need to show that f(n) is both O(n^2) and Ω(n^2).

From the previous proofs, we have already established that f(n) is O(n^2) and Ω(n^2), which means f(n) is bounded both above and below by n^2.

Therefore, f(n) = 3n^2 + 2n - 1 is Θ(n^2).

To learn more about bounds

https://brainly.com/question/29618843

#SPJ11


please let me know the
right answer
A 550,000 B 8100,000 \( E 150,000 \) 6200,000

Answers

The correct answer is E 150,000 from the typographical errors due to the excessive number of zeros.

Among the given options, the correct answer is E 150,000. This is evident as the options A 550,000, B 8100,000, and 6200,000 are likely typographical errors due to the excessive number of zeros. Option E is the only reasonable option with a more realistic value.

To elaborate, option A 550,000 appears to have an extra zero, resulting in an inflated value. Similarly, option B 8100,000 seems to have misplaced the decimal point, leading to an excessively high value. Option 6200,000 appears to be a combination of two numbers, possibly due to a formatting error.

On the other hand, option E 150,000 is a more plausible value in comparison to the other options. It is important to carefully consider the given options and assess their numerical values to arrive at the correct answer. Therefore, based on logical reasoning and the evaluation of the options provided, the correct answer is E 150,000.

Learn more about typographical errors here:

https://brainly.com/question/14470831

#SPJ11

Show that the convolution formula is unchanged if the input x and impulse response h are swapped, i.e. that ∫
−[infinity]
[infinity]

x(τ)h(t−τ)dτ=∫
−[infinity]
[infinity]

h(τ)x(t−τ)dτ (This symmetry between x and h allows us to write this as " x(t)∗h(t)
′′
.)

Answers

The expression obtained is identical to the original convolution integral, we have shown that the convolution formula remains unchanged if the input x and impulse response h are swapped. This symmetry between x and h allows us to write it as "x(t) * h(t)".

To show that the convolution formula is unchanged when the input x and impulse response h are swapped, we need to prove the commutativity of convolution.

Let's consider the convolution integral:

y(t) = ∫[−∞[tex]]^[∞][/tex] x(τ)h(t - τ) dτ

Now, we will interchange the roles of x and h, and rewrite the convolution integral as:

y(t) = ∫[−∞[tex]]^[∞][/tex] h(τ)x(t - τ) dτ

By comparing the two expressions, we can observe that the only difference is the swapping of x and h in the integrand.

To prove the symmetry and commutativity of convolution, we can perform a change of variable in the second integral:

Let τ' = t - τ

The limits of integration remain the same, as the integral is taken over the entire real line. Differentiating τ' with respect to τ gives dτ' = -dτ.

Substituting these into the second integral, we have:

y(t) = ∫[−∞[tex]]^[∞][/tex] h(τ')x(t - τ') (-dτ')

Notice that the limits of integration do not change, as they are independent of the variable of integration.

Now, let's reverse the order of integration by changing the sign of dτ':

y(t) = ∫[∞[tex]]^[−∞[/tex]] h(τ')x(t - τ') dτ'

We can rename the dummy variable of integration back to τ:

y(t) = ∫[−∞[tex]]^[∞[/tex]] h(τ)x(t - τ) dτ

To know more about convolution formula refer to-

https://brainly.com/question/32650611

#SPJ11

Complete Question

To show that the convolution formula is unchanged when the input function x(t) and impulse response function h(t) are swapped, we need to prove that:

∫[−∞]^[∞] x(τ)h(t - τ) dτ = ∫[−∞]^[∞] h(τ)x(t - τ) dτ

This symmetry between x and h allows us to write the convolution as "x(t) * h(t)".

Suppose the angle of inclination of the hill
is 10° and when the driver (who is going at a speed of 25 mph) sees the deer and slams on the breaks, he is 25 m away.
The coefficient of kinetic friction is still 0.4.
4. What is the magnitude of the acceleration the car undergoes? Express your answer in m/s2 and input the number
only.
5. Does the drive hit the deer?
A. Yes
B. No

Answers

The magnitude of the acceleration is approximately -0.267 m/s², and the car does not hit the deer.

To find the magnitude of acceleration, we need to consider the forces acting on the car. The gravitational force component parallel to the incline is given by [tex]\( F_g = m \cdot g \cdot \sin(10^\circ) \)[/tex], where [tex]\( m \)[/tex] is the mass of the car and [tex]\( g \)[/tex] is the acceleration due to gravity. The frictional force opposing the motion is given by [tex]\( F_f = m \cdot g \cdot \cos(10^\circ) \cdot \mu_k \)[/tex], where [tex]\( \mu_k \)[/tex] is the coefficient of kinetic friction.

The net force acting on the car is the difference between the gravitational force and the frictional force: [tex]\( F_{\text{net}} = F_g - F_f \)[/tex].

Using Newton's second law, [tex]\( F_{\text{net}} = m \cdot a \)[/tex], where [tex]\( a \)[/tex] is the acceleration. We can solve for [tex]\( a \)[/tex] by rearranging the equation: [tex]\( a = \frac{F_{\text{net}}}{m} \)[/tex].

Substituting the given values and calculating the magnitude of acceleration:

[tex]\[ a = \frac{m \cdot g \cdot \sin(10^\circ) - m \cdot g \cdot \cos(10^\circ) \cdot \mu_k}{m} \\[/tex]

[tex]\quad = g \cdot (\sin(10^\circ) - \cos(10^\circ) \cdot \mu_k) \][/tex]

Now, let's calculate the value of the acceleration. We are given that the speed of the car is 25 mph, which is equivalent to [tex]\( 25 \times \frac{1609}{3600} \)[/tex] m/s.

Using [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex] and [tex]\( \mu_k = 0.4 \)[/tex], we have:

[tex]\[ a = 9.8 \cdot (\sin(10^\circ) - \cos(10^\circ) \cdot 0.4) \approx -0.267 \, \text{m/s}^2 \][/tex]

The negative sign indicates that the acceleration is in the opposite direction of the car's motion.

To determine if the car hits the deer, we need to compare the stopping distance of the car to the distance to the deer. The stopping distance can be calculated using the equation: [tex]\( d = \frac{v^2}{2 \cdot a} \)[/tex], where [tex]\( v \)[/tex] is the initial velocity and [tex]\( a \)[/tex] is the acceleration.

Substituting the given values, we have:

[tex]\[ d = \frac{(25 \times \frac{1609}{3600})^2}{2 \cdot (-0.267)} \approx 596 \, \text{m} \][/tex]

Since the stopping distance (596 m) is greater than the distance to the deer (25 m), the car does not hit the deer.

Therefore, the magnitude of acceleration is approximately [tex]\( -0.267 \, \text{m/s}^2 \)[/tex] and the car does not hit the deer.

Learn more about acceleration: https://brainly.com/question/25876659

#SPJ11

Other Questions
Suppose a technological advance reduces the cost of making computers. a) Draw a supply-and-demand diagram to show what happens to price, quantity, consumer surplus, and producer surplus in the market for computers. b) Computers and adding machines (calculators) are substitutes. Use a supply-and-demand diagram to show what happens to price, quantity, consumer surplus, and producer surplus in the market for adding machines. Should adding machine producers be happy or sad about the technological advance in computers? c) Computers and software are complements. Draw a supply-and-demand diagram to show what happens to price, quantity, consumer surplus, and producer surplus in the market for software. Should software producers be happy or sad about the technological advance in computers? d) Does this analysis help explain why software producer Bill Gates is one of the world's richest men? The height of a helicopter above the ground is given by h=3.25t 2 , where h is in meters and t is in seconds. At t=1.85 s, the heficopter releases a smali mailogg. How lang after its release does the malbag reach the ground? Which one of the following watershed parameters cannot be directly measured? Select one: precipitation evapotranspiration (ET) runoff sport is increasingly impacted by globalization. this is an example of the changing nature of work. (true or false) An economy is described by the following model: ZC+I+GY d YTC=100+0.5(YT)I=100+0.1YY=Z How many identities does this model have? How many behavioural equations does this model have? How many equilibrium conditions does this model have? How many variables does this model have? Question 17: In March 2022 there were 2826000 employed and 94000 unemployed. Please calculate the size of the labour force and the unemployment rate (round to the nearest 2 decimal places). Kelly is the owner of a small gourmet burger food truck. She sells her burgers during lunch in the parking lot of the Menlyn Maine shopping centre. Her expenses are recorded as follow: Sales price per burger: R35 per burger Variable cost per burger: R12 per burger Total fixed cost per annum: R42000 If Kelly sold 23000 burgers during 2020, what would her income be for the year? Select one: a. R805000 b. R23000 c. R234000 d. Kelly would not make any income 7. (5 pts) Prove that there are no epimorphisms \( \theta: \mathbb{Z}_{30} \rightarrow \mathbb{Z}_{20} \). Suppose a perfectly competitive firm faces the following short-run cost and revenue conditions: ATC = $6.00; AVC = $4.00; MC = $3.50; MR = $3.50. The firm should OA) shut down. O B) increase prile. OC) increase output. O D) remain at the same position. When price equals marginal cost A) the marginal benefits of consuming an extra unit of the good exactly equals the marginal cost to society of producing the good. OB) firms make zero profits. C) the industry is in long-run equilibrium. OD) firms make positive profits. Kevin , a 19 year-old full time college student ,earned $,3000in wages . His maximum IRA contribution for 2020 is:A. $750B. $3,697C. $3,000D. $3,750 proton with an initial speed of 456,000 m/s is brought to rest by an electric field. What was the potential difference that stopped the proton? (Express your answer in volts to the nearest 10 V) A proton with an initial speed of 456,000 m/s is brought to rest by an electric field. What was the potential difference that stopped the proton? (Express your answer in volts to the nearest 10 V) 1. What is digital disruption and how it related to Fintech? 2. With your current understanding on Fintech which financial services that you think will be benefit with Fintech? 3. What is Distributed Ledger Technology (DLT), please state its characteristics and give two different technologies example on DTL? 4. With your understanding in Bitcoin, please tell the characteristics of this technology and how it is important toward Fintech? ) 5. Cryptocurrency wallet are being used for cryptocurrency buying and selling, what are the different types of wallets available in the market and what major technology has been use for security issues? Rotated sorted array has n ltngth and can shift all elements right k times. 1 4) Assuming the sound source emits sound waves with a power output of \( 100 \mathrm{~W} \). (10 marks) a) Find the intensity at \( 8 \mathrm{~m} \) away from the source b) Find the distance at which Calculate the advertising budget for a start-up using benchmark-based approach. Start-up expects to reach annual $300,000 revenue They compete in the industry that dedicates on average 6% of the revenues to promotion Ownership via ________ appeals to some investors as it allowsthem to participate in the stock market without having to makeseparate decisions about each purchase or sale of stocks.Question 23 optio Design or choose a system to help the company solve its main problems. State the following:The new system name (1)Its features (1)Problems that will be solved (1)(If the system that the company uses is successful and does not need to be changed, you can mention that (1), mention its features (1), and mention the problems that it solved or prevented from happening (1).) Two cars have identical horns, each emitting a frequency of f s =395 Hz. One of the cars is moving with a speed of 19.6 m/s toward a bystander waiting at a corner, and the other car is parked. The speed of sound is 343 m/s. What is the beat frequency heard by the bystander? Beat frequency = Assume the slope of Magnetic field produced versus number of turns of a coil (you did this in the lab) was found to be 10.65G/turn. If the number of turns of the coil is increased from 7 to 24 , the magnetic field increases by (G). Round your answer to two decimal places. The concept of market segmentation is at the heart of marketing. It is a strategy used to satisfy customers' needs effectively" (Kotler \& Armstrong, 2010). You are now required to conduct research to critically assess National Housing Enterprise (NHE) as a company. This organisation was established by the National Housing Act No.f of 1993 as amended and complies with all relevant legislations such as the Companies Act (No.28 of 2004) The footprints of the NHE are seen in the following five regions, namely, Khomas, Karas, Erongo, Oshana and Kavango West. The NHE,s vision is "to be the leading agent in providing adequate, safe and affordable housing in Namibia". Its mission statement stipulates that the NHE was established "to provide and finance affordable, quality and adequate housing thereby contributing to Namibia's socio-economic development and creating a stable, progressive human habitat". Based on the statement above and the information regarding NHE, answer the questions belowMarket segmentation is the process of dividing a total market or mass market into meaningful, relatively similar and identifiable segments or groups (Kotler \& Armstrong, 2010). Discuss four (4) segmentation strategies that NHE uses to create strong relationships with its customers. IMPORTANT! Please Solve Step bystep on paper16.5 A barge company on the Ohio River purchases new barges and tugs for \( \$ 1,000,000 \) on August 28. Find the allowable depreciation amounts for the current and future years.