Suppose that the graph of a given function, f(x) contains the point (9,4). What point must be on each of the following transformed graphs? Please write your answer as points (a,b) including the parentheses. Give a brief one sentence explanation of your thinking for each part. a. The graph of f(x−6) must contain the point: b. The graph of f(x)−5 must contain the point: c. The graph of f(x+2)+7 must contain the point: d. The graph of −21f(x) must contain the point: e. The graph of −2f(x−1)−3 must contain the point:

Answers

Answer 1

graph a. (15, 4) b. (9, -1) c. (11, 11) d. (9, -84) e. (10, -11)

Suppose that the graph of a function, f(x) contains the point (9,4).

a. The graph of f(x−6) must contain the point: For a function to get the graph of f(x - 6), we have to replace x with x - 6 in f(x). So the point in the new graph will be (9 + 6, 4) = (15, 4).

b. The graph of f(x)−5 must contain the point: For the new graph f(x) - 5, we have to subtract 5 from each of the y-coordinates of the original graph. So the point in the new graph will be (9, 4 - 5) = (9, -1).

c. The graph of f(x+2)+7 must contain the point: For the new graph f(x + 2) + 7, we have to add 2 to each of the x-coordinates of the original graph and add 7 to each of the y-coordinates.So the point in the new graph will be (9 + 2, 4 + 7) = (11, 11).

d. The graph of −21f(x) must contain the point:For the new graph -21f(x), we have to multiply each of the y-coordinates by -21.So the point in the new graph will be (9, 4 x -21) = (9, -84).

e. The graph of −2f(x−1)−3 must contain the point:For the new graph -2f(x - 1) - 3, we have to replace x with x - 1 in f(x), then multiply by -2 and subtract 3 from each of the y-coordinates.So the point in the new graph will be (9 + 1, -2 x 4 - 3) = (10, -11).

Hence the solution is as follows: a. (15, 4)b. (9, -1)c. (11, 11)d. (9, -84)e. (10, -11)

Learn more about graph function https://brainly.com/question/28738823

#SPJ11


Related Questions

(3) How many license plates can be made using either two uppercase English letters followed by four digits or two digits followed by four uppercase English letters? (4) How many strings of eight Engli

Answers

(3) To find the total number of license plates that can be made, we need to consider the two given cases separately:

Case 1: Two uppercase English letters followed by four digits In this case, we have 26 choices for each of the two letters (A-Z), and 10 choices for each of the four digits (0-9). Therefore, the total number of license plates that can be made in this case is: 26 * 26 * 10 * 10 * 10 * 10 = 6,760,000

Case 2: Two digits followed by four uppercase English letters In this case, we have 10 choices for each of the two digits (0-9), and 26 choices for each of the four letters (A-Z). Therefore, the total number of license plates that can be made in this case is: 10 * 10 * 26 * 26 * 26 * 26 = 45,697,600 To find the overall number of license plates, we add the results from both cases together: 6,760,000 + 45,697,600 = 52,457,600 Therefore, the total number of license plates that can be made using either two uppercase English letters followed by four digits or two digits followed by four uppercase English letters is 52,457,600.

Learn more about the  License plates:

https://brainly.com/question/30809443

#SPJ11

A continuous random variable X has a PDF f(x)=ax+x
2
for 0≤x≤1. What is the probability that X is between 0.5 and 1 ?

Answers

The probability that the continuous random variable X lies between 0.5 and 1 can be calculated by integrating the probability density function (PDF) over that interval. In this case, the probability is found to be 0.3195.

To find the probability that X is between 0.5 and 1, we need to calculate the integral of the PDF f(x) over that interval. The PDF is given as f(x) = ax + x^2, where 0 ≤ x ≤ 1.

To determine the value of 'a' and normalize the PDF, we integrate f(x) from 0 to 1 and set it equal to 1 (since the total probability must be 1):

∫[0 to 1] (ax + x^2) dx = 1

Solving this integral, we get:

[(a/2)x^2 + (1/3)x^3] from 0 to 1 = 1

(a/2 + 1/3) - 0 = 1

a/2 + 1/3 = 1

a/2 = 2/3

a = 4/3

Now, we can calculate the probability by integrating the PDF from 0.5 to 1:

∫[0.5 to 1] (4/3)x + x^2 dx

Evaluating this integral, we find the probability to be approximately 0.3195. Therefore, there is a 31.95% chance that X lies between 0.5 and 1.

To learn more about probability click here: brainly.com/question/31828911

#SPJ11

what is the area of equilateral triangle whose side is x cm

Answers

Answer:

60 cm^2

Step-by-step explanation:

w

The area of an equilateral triangle with side x cm is (sqrt(3)/4)*x^2 square cm.


A random seed must be set prior to running the permutation test
to ensure the relevant approximate sampling distribution is
produced.
Is this True or False? explain

Answers

Setting a random seed prior to running a permutation test is crucial to ensure that the relevant approximate sampling distribution is consistently produced and to maintain the reproducibility of the results.

Setting a random seed prior to running a permutation test is not a strict requirement. The purpose of setting a random seed is to ensure reproducibility. When a random seed is set, it initializes the random number generator in a way that produces the same sequence of random numbers each time the code is executed. This can be useful in situations where you want to replicate the exact results of a permutation test.

However, the statement itself is not entirely accurate. The primary purpose of a permutation test is to obtain an exact sampling distribution rather than an approximate one. In a permutation test, the observed data are randomly permuted to generate a null distribution under the null hypothesis. The observed test statistic is then compared to the null distribution to determine its significance.

Setting a random seed can be beneficial in cases where you need to ensure reproducibility, such as when you're sharing your code or conducting simulations. However, it is not essential for generating the relevant sampling distribution in a permutation test. The key factor is the random permutation of the data, rather than the random number generator itself.

Learn more about test statistic here:

https://brainly.com/question/32118948

#SPJ11

The time to repair an electronic instrument is a normally distributed random variable measured in hours. The repair time for 16 such instrument chosen at random are as follows 150,272,220,367,220,361,152,262,110,210,172,266,172,252,466,164 1. You wish to know if the man repair time exceeds 230 hours. Set up appropriate hypotheses for investigating this issue (5 points) 2. Test the hypotheses you formulated. What are your conclusions? Use α=0.05 (15 points) 3. Construct a 90 percent confidence interval on mean repair time.

Answers

Hypotheses for investigating the issue: Null hypothesis (H1): Mean repair time <= 230 hours

Alternate hypothesis (Ha): Mean repair time > 230 hours

2. Using the t-distribution table, at 15 degrees of freedom and a significance level of 0.05, the critical value is 1.753.

So, the calculated value 0.37626 < critical value 1.753.

Hence, we cannot reject the null hypothesis.

Therefore, we can conclude that there is not enough evidence to prove that the mean repair time exceeds 230 hours.

3. For a 90% confidence interval,α = 0.1

(since 1 - α = 0.90)

n = 16 x

= 232.5625

s = 91.9959.

Using the formula,

CI = 232.5625 ± t(0.05, 15) × (91.9959 / √16)

From the t-distribution table, for 15 degrees of freedom and α = 0.05,

the value of t is 1.753.

CI = 232.5625 ± 1.753 × (91.9959 / √16)

CI = 232.5625 ± 47.7439CI

= [184.8186, 280.3064]

Therefore, the 90% confidence interval for the mean repair time is [184.8186, 280.3064].

To know more on Hypothesis visit:

https://brainly.com/question/32562440

#SPJ11

A candidate claims that she has 60% support from the general electorate. A random sample of 40 likely voters is taken, and 21 of them (53%) say that they support the candidate.
a) The 53% is a/an:
population parameter
sample statistic
variable
Cobservational unit
b) The sample size is:
53
60
021
40
c) Each likely voter that is surveyed is a/an:
observational unit
sample statistic
population parameter
variable
d) Whether or not the likely voter supports the candidate is a/an:
sample statistic
population parameter

Answers

The terms sample statistic, sample size, observational unit, and variable define the values and characteristics in this situation.

a) The 53% is a sample statistic. The sample statistic refers to the values calculated from the sample data that describe the characteristics of the sample. In this case, 53% is calculated from a sample of 40 likely voters, so it is a sample statistic

b) The sample size is 40. The sample size refers to the number of individuals or units. In this case, a random sample of 40 likely voters is taken, so the sample size is 40.

c) Each likely voter that is surveyed is an observational unit. An observational unit is an individual, object, or other unit on which observations are made. In this case, each likely voter surveyed is an observational unit.

d) Whether or not the likely voter supports the candidate is variable. A variable is any characteristic or attribute that can be measured or observed and vary across different observational units. In this case, whether or not the likely voter supports the candidate is a variable because it can vary across the different likely voters in the sample.

The terms sample statistic, sample size, observational unit, and variable define the values and characteristics in this situation.

To know more about the sample statistic, visit:

brainly.com/question/32828879

#SPJ11


please help answer must be at least 150 words
long. Define Data Analytics and explain how a university
might use its techniques to recruit and attract potential
students.

Answers

Data analytics is the process of collecting, analyzing, and interpreting large volumes of data to gain insights and make informed decisions.

Data analytics involves extracting meaningful information from vast amounts of data to guide decision-making. In the context of university recruitment, data analytics can be utilized to identify patterns, trends, and preferences among potential students.

By analyzing historical data on student demographics, interests, and academic performance, universities can gain valuable insights into the characteristics and behaviors of successful applicants.

Universities can use data analytics techniques to target and personalize their marketing efforts. By analyzing data from various sources, such as social media platforms, website interactions, and online surveys, universities can develop targeted advertising campaigns tailored to specific student segments.

These campaigns can highlight the university's unique features, programs, and campus culture, effectively attracting potential students who align with their offerings.

Furthermore, data analytics can assist universities in optimizing their recruitment strategies. By tracking and analyzing data on recruitment channels, conversion rates, and student engagement, universities can identify the most effective recruitment methods and allocate resources accordingly.

They can also leverage predictive analytics to forecast enrollment numbers and anticipate student demand for specific programs or majors, allowing them to proactively adjust their recruitment efforts.

In summary, data analytics enables universities to make data-driven decisions in their recruitment efforts. By utilizing techniques such as data analysis, targeting, and predictive modeling, universities can better understand their prospective student population, tailor their marketing strategies, and optimize their recruitment efforts to attract and enroll the most suitable candidates.

Learn more about data here:

https://brainly.com/question/24257415

#SPJ11

In this problem we consider an equation in differential form Mdx+Ndy=0. (−(8ysin(x)))dx+(8cos(x))dy=0 Find M
y

= N
x

= If the problem is exact find a function F(x,y) whose differential, dF(x,y) is the left hand side of the differential equation. That is, level curves F(x,y)=C, give implicit general solutions to the differential equation. If the equation is not exact, enter NE otherwise find F(x,y) (note you are not asked to enter C) F(x,y)=

Answers

The values of M and N are M = -(8y*sin(x)) and N = 8*cos(x). The equation is exact, and the function F(x, y) is F(x, y) = -8yx*cos(x) + 8yx*sin(x) + k(x) = C.

The given equation in differential form is Mdx + Ndy = 0. We are asked to find the values of M and N. M = -(8y*sin(x)) N = 8*cos(x) If the equation is exact, we need to find a function F(x, y) whose differential dF(x, y) is the left-hand side of the differential equation.

The level curves F(x, y) = C can then give the implicit general solutions to the differential equation.

To check if the equation is exact, we need to ensure that the partial derivative of M with respect to y is equal to the partial derivative of N with respect to x.

∂M/∂y = -8*sin(x) ∂N/∂x = -8*sin(x) Since ∂M/∂y = ∂N/∂x, the equation is exact. To find F(x, y), we integrate M with respect to x and integrate N with respect to y.

∫M dx = -8∫y*sin(x) dx = -8y*cos(x) + g(y) ∫N dy = 8∫cos(x) dy = 8y*sin(x) + f(x) Comparing these integrals with the differential of F(x, y), we find: ∂F/∂x = -8y*cos(x) + g(y) ∂F/∂y = 8y*sin(x) + f(x)

To find F(x, y), we integrate ∂F/∂x with respect to x and integrate ∂F/∂y with respect to y. ∫(-8y*cos(x) + g(y)) dx = -8yx*cos(x) + h(y) ∫(8y*sin(x) + f(x)) dy = 8yx*sin(x) + k(x)

Comparing these integrals with F(x, y), we find: F(x, y) = -8yx*cos(x) + h(y) = 8yx*sin(x) + k(x)

Therefore, the function F(x, y) is F(x, y) = -8yx*cos(x) + 8yx*sin(x) + k(x) = C, where C is a constant.

Learn more about partial derivative  here:

https://brainly.com/question/32387059

#SPJ11

20 minutes B-Couple Sdn. Bhd. assembles electric rice cooker for home appliance. Each rice cooker has one heating plate. The heating plate supplied by Zenmotor Sdn. Bhd. It takes four (4) days for heating plate to arrive at the B-Couple Sdn. Bhd. after the order is placed. It is estimated weekly demand for rice cooker is 650 units. The ordering cost is RM18.25 per order. The holding cost is RM0.50 per heating plate per year. This company works 50 weeks per year and 5 days per- week. a) Determine optimum number of heating plate should be ordered to minimize the annual inventory cost. b) Determine the minimum inventory stock level that trigger a new order should be placed. c) Calculate the time between order.. d) Construct two inventory cycles showing the Economic Order Quantity, time between orders, reorder point and time to place order.

Answers

a) Optimum number of heating plate should be ordered to minimize the annual inventory cost Economic Order Quantity (EOQ) is a method used to determine the optimum number of goods to order to minimize inventory cost.

The EOQ formula is given by;
EOQ = √(2DS / H)where D = Annual demand = 650 × 50 = 32,500S = Cost of placing an order =
RM18.25H = Annual holding cost per unit = RM0.50
[tex]EOQ = √(2 × 32,500 × 18.25 / 0.50)[/tex]
EOQ = √(1,181,250)
EOQ = 1086.012 ≈ 1086 units
Hence, the optimum number of heating plate to be ordered is 1086 units.

b) Minimum inventory stock level that trigger a new order should be placedThe reorder point (ROP) formula is given by; [tex]ROP = dL + (z × σL)[/tex]
ROP = (130 × 4) + (1.65 × 6.5)
ROP = 520 + 10.725
ROP = 530.725 ≈ 531 units
Therefore, the minimum inventory stock level that trigger a new order should be placed is 531 units.

c) Time between orders Time between orders (TBO) formula is given by;TBO = EOQ / DIn this case;TBO = 1086 / 650TBO = 1.67 weeks
Therefore, the time between orders is 1.67 weeks.

d) Inventory cycle showing Economic Order Quantity, time between orders, reorder point and time to place order The inventory cycle above shows the following information; The Economic Order Quantity (EOQ) is 1086 units. The time between orders (TBO) is 1.67 weeks. The reorder point (ROP) is 531 units. The time to place the order is 0.33 weeks.

Tp know more about inventory visit:-

https://brainly.com/question/31146932

#SPJ11

Which point represents the value of –(–2) on the number line?

A number line has points A, negative 3, B, blank, 0, blank, C, 3, D.

Answers

Therefore, the missing point on the number line, which represents the value of –(–2) or 2, can be labeled as point "E" or any other appropriate designation.

The point representing the value of –(–2) on the number line can be determined by simplifying the expression –(–2), which is equivalent to 2.

Looking at the number line description provided, we can identify that point B represents the value of –3, point 0 represents zero, and point C represents 3. Therefore, we need to locate the point that corresponds to the value of 2.

Based on the pattern of the number line, we can infer that the point representing 2 would be between point 0 and point C. Specifically, it would be one unit to the left of point C.

For such more question on number line

https://brainly.com/question/24644930

#SPJ8

For three events A, B and C, we know that A and C are independent, B and C are
independent, A and B are disjoint
3P (AUC) = 2 4P(BUC)=3 12P(AU BUC) = 11
Find P(A), P(B) and P(C).

Answers

The solution is:P(A) = 1/6, P(B) = 1/4, and P(C) = 5/12.

Given: Three events A, B, and C, such that A and C are independent, B and C are independent, A and B are disjoint,3P(AUC) = 2, 4P(BUC) = 3, and 12P(AUBUC) = 11To find: Probability of A, B, and C.Solution:

Let's begin by simplifying the given expressions using the formula for the union of events:

P(A U C) = P(A) + P(C) - P(A ∩ C)P(B U C)

= P(B) + P(C) - P(B ∩ C)P(A U B U C)

= P(A) + P(B) + P(C) - [P(A ∩ B) + P(A ∩ C) + P(B ∩ C) - P(A ∩ B ∩ C)]

Given,A and C are independent. Then P(A ∩ C) = P(A) × P(C)Similarly, B and C are independent. Then P(B ∩ C) = P(B) × P(C)Also, A and B are disjoint.

Then P(A ∩ B) = 0Using these, let's find the values of P(A), P(B), and P(C):3P(A U C) = 2=> P(A U C) = 2/3P(B U C)

= 4P(B U C) = 3=> P(B U C) = 3/4

Given,12P(A U B U C) = 11=> P(A U B U C) = 11/12

Using the above formulas,P(A) + P(C) - P(A) × P(C)

= 2/3P(B) + P(C) - P(B) × P(C)

= 3/4P(A) + P(B) + P(C) - P(B) × P(C) - P(A) × P(C) = 11/12

Let's name these equations (1), (2), and (3), respectively.

Multiplying (1) and (2),P(A U C) × P(B U C) = [2/3] × [3/4]

=> P(A U C ∩ B U C) = 1/2

Multiplying (3) by 4,4P(A) + 4P(B) + 4P(C) - 4P(B)

× P(C) - 4P(A) × P(C) = 11

Simplifying,4(P(A) + P(B) + P(C))

= 11 + 4P(B) × P(C) + 4P(A) × P(C)

Substituting the value of P(A U C ∩ B U C) from equation (1),P(A U B U C)

= P(A U C) + P(B U C) - P(A U C ∩ B U C)

=> P(A U B U C)

= 2/3 + 3/4 - 1/2=> P(A U B U C) = 11/12

Substituting the values of P(A U C) and P(B U C) from equations (1) and (2),P(A) + P(C) - P(A) × P(C) + P(B) +

P(C) - P(B) × P(C) - 1/2 = 11/12

=> 2P(A) + 2P(B) + 3P(C) - 2P(B) × P(C) - 2P(A) × P(C)

= 23/12Substituting this in the above equation,4(23/12 - 3P(C) + P(C))

= 11 + 4P(B) × P(C) + 4P(A) × P(C)

=> 23 - 3P(C) + P(C)

= 55/12 - P(B) × P(C) - P(A) × P(C)

=> 11/12 = P(C) × [P(B) + P(A) - 4/3]

Equation (3) becomes,P(A) + P(B) + P(C) - 0 - P(A) × P(C) = 11/12

=> P(A) + P(B) + P(C) - P(A) × P(C) = 11/12

Now, we have three equations with three unknowns, P(A), P(B), and P(C):(i) 2P(A) + 2P(B) + 3P(C) -

2P(B) × P(C) - 2P(A) × P(C)

= 23/12(ii) 23 - 3P(C) + P(C)

= 55/12 - P(B) × P(C) - P(A) × P(C)

(iii) P(A) + P(B) + P(C) - P(A) × P(C) = 11/12

Solving these equations, we getP(C) = 5/12Substituting this value in equation (ii),P(A) + P(B) = 7/12

Substituting the above two values in equation (iii),P(A) = 1/6 and P(B) = 1/4

Hence, the probability of A, B, and C are:P(A) = 1/6P(B) = 1/4P(C) = 5/12

Therefore, the solution is:P(A) = 1/6, P(B) = 1/4,

and P(C) = 5/12.

To know more about Probability visit:

https://brainly.com/question/31828911

#SPJ11

Anna is interested in a survey that shows that 74% of Americans al ways make their beds, 16% never make their beds and the rest some times make their beds. Assume that each persons' bed making habit are independent of others. Anna wants to explore whether these results can be repeated or not. She conducts two different studies. b In the second experiment Anna works through a randomly created list of American university students and asks them how often they make their bed (always, sometimes or never). She decided to keep calling students until she has found 5 students who sometimes make their bed. Let M be the random variable that shows the number of calls Anna made to those who always or never make their bed. Answer the following questions: i Formulate the null hypothesis and alternative hypothesis, in terms of the distribution of M and its parameters on the basis of the previous survey. Remember to specify the full distribution of M under the null hypothesis. Use a two-sided test. ii Given that M=170, write down the R command required to find the p-value for the hypothesis test, and run this com- mand in R to find the p-value. (you can get help from the shape of distributions in your coursebook) iii Interpret the result obtained in part (ii) in terms of the strength of evidence against the null hypothesis.

Answers

There is enough evidence to conclude that the results of the first survey cannot be replicated.

(i) Formulation of null hypothesis and alternative hypothesis

The null hypothesis: H₀: M = 180, where M is the random variable that represents the number of calls Anna made to those who always or never make their bed.

The alternative hypothesis: H₁: M ≠ 180, where M is the random variable that represents the number of calls Anna made to those who always or never make their bed.

The full distribution of M under the null hypothesis can be represented as P(X = x) = nCx * p^x * q^(n-x), where n = 180, p = 0.74 and q = 1 - p = 0.26.

(ii) Calculation of p-value and R command required to find the p-value for the hypothesis test

Given that M = 170. The R command required to find the p-value for the hypothesis test is:

pval <- 2 * pbinom(170, 180, 0.74)The value of pval obtained using the R command is 0.0314.

(iii) Interpretation of the result obtained in part (ii)The p-value obtained in part (ii) is 0.0314. The p-value is less than the level of significance (α) of 0.05. Therefore, we reject the null hypothesis and accept the alternative hypothesis. There is enough evidence to conclude that the results of the first survey cannot be replicated.

Learn more about survey

https://brainly.com/question/31624121

#SPJ11

∬ D

(x+y)dA, where D={(x,y)∣sin(x)≤y≤0 and π≤x≤2π}. 47. ∬ D

y 2
+1
1

dA, where D is the region bounded by the lines y=1,y=x, and x=0.

Answers

The value of the double integral is zero.

Let's calculate the double integrals step by step.

∬ D (x+y) dA, where D={(x,y)∣sin(x)≤y≤0 and π≤x≤2π}:

To evaluate this integral, we first need to determine the limits of integration. The region D is defined by the inequalities sin(x) ≤ y ≤ 0 and π ≤ x ≤ 2π. This represents the region below the curve y = sin(x) between x = π and x = 2π.

The integral becomes:

∬ D (x+y) dA = ∫[π,2π] ∫[sin(x),0] (x+y) dy dx

Integrating with respect to y first, we get:

∫[π,2π] [(x+y)y] |[sin(x),0] dx

= ∫[π,2π] (x(0) - x(sin(x))) dx

= ∫[π,2π] -x(sin(x)) dx

Since sin(x) is an odd function over the interval [π, 2π], the integral of an odd function over a symmetric interval is zero. Therefore, the double integral ∬ D (x+y) dA evaluates to zero.

∬ D y^2/(1+x) dA, where D is the region bounded by the lines y=1, y=x, and x=0:

To evaluate this integral, we need to determine the limits of integration for x and y. The region D is the triangular region bounded by the lines y = 1, y = x, and x = 0.

The integral becomes:

∬ D y^2/(1+x) dA = ∫[0,1] ∫[0,y] y^2/(1+x) dx dy

Integrating with respect to x first, we get:

∫[0,1] [y^2 ln(1+x)] |[0,y] dy

= ∫[0,1] (y^3 ln(1+y) - y^3 ln(1)) dy

= ∫[0,1] y^3 ln(1+y) dy

To evaluate this integral further, we need to apply appropriate techniques such as integration by parts or substitution. Without further information or constraints, it is not possible to determine the exact value of this integral without further calculations.

In summary, the first double integral evaluates to zero, while the second integral involving y^2/(1+x) cannot be determined without additional calculations or information.

Learn more about double integral  here:

/brainly.com/question/28219133

#SPJ11

A particle moves in a straight line from a point A to a point B with constant acceleration. The particle passes A with speed 3ms^(-1). The particle passes B with speed 10ms^(-1), five seconds after it passed A. The distance AB is...?

Answers

The distance AB with constant acceleration is 87.5 meters.

To solve this problem, we need to apply the following kinematic equation, relating distance, velocity, acceleration, and time :`v = u + at` where `v` is final velocity, `u` is initial velocity, `a` is acceleration, and `t` is time. Let `s` be the distance AB. Given that the particle has constant acceleration, we can use the following kinematic equation relating velocity, acceleration, and distance:`v^2 = u^2 + 2as`where `s` is the distance traveled. Using the information given in the problem, we can find the acceleration of the particle from the first equation: When the particle passes point A, the initial velocity `u = 3ms^(-1)`.

When the particle passes point B, the final velocity `v = 10ms^(-1)`.The time taken to move from point A to point B is `t = 5s`.Using the first equation, `v = u + at `Substituting the values of `v`, `u`, and `t`, we get:`10 = 3 + a(5)`Simplifying, we get `a = 1.4 ms^(-2)`Now that we know the acceleration of the particle, we can use the second kinematic equation to find the distance AB:`v^2 = u^2 + 2as` Substituting the values of `v`, `u`, and `a`, we get:`100 = 9 + 2(1.4)s` Solving for `s`, we get: `s = 87.5 m `Therefore, the distance AB is 87.5 meters.

To know more about constant acceleration: https://brainly.com/question/28693744

#SPJ11

Complete the parametric equations of the line through the points (1,−2,−8) and (0,3,5) 

x(t)=1−1t 
y(t)=  ______
z(t)= _______

Answers

The parametric equations of the line through the points (1,−2,−8) and (0,3,5) is given by;

x(t) = 1 - t y(t) = -2 + 5t z(t) = -8 + 13t

We are to complete the parametric equations of the line through the points (1,−2,−8) and (0,3,5).

We can determine the direction vector by subtracting the coordinates of the points in the order given.

This means; direction vector, d = (0 - 1, 3 - (-2), 5 - (-8))= (-1, 5, 13)

Hence, the parametric equations of the line through the points (1,−2,−8) and (0,3,5) is given by:

x(t) = 1 - t y(t) = -2 + 5t z(t) = -8 + 13t

To know more about parametric equations visit :

https://brainly.com/question/29275326

#SPJ11

Let ≡=x= ⎝


1
0
−1




,β= ⎩






1
0
0




, ⎝


0
1
0




, ⎝


0
0
1








,e= C= ⎩






1
1
1




, ⎝


0
1
1




, ⎝


0
0
1








. 1. Find the coordinate vectors [x] β

and [x] C

of x with respect to the bases (of R 3
) β and C, respectively. 2. Find the change of basis matrix P c

⟵β from β to C. 3. Use your answer in (2) to compute [x] C

and compare to your answer found in part (1). 4. Find the change of basis matrix P β

←c.

Answers

1.) Using the given values of x and β, we have [x]_β = [10, -1, 0]. 2) the change of basis matrix P_c←β is given by P_c←β = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]. 3) they are the same. 4) P_β←c = [[1, 0, 0], [0, 1, 0], [0, 0, 1]].

In this problem, we are given three bases β, C, and e for the vector space R^3. We need to find the coordinate vectors of a given vector x with respect to the bases β and C. Additionally, we find the change of basis matrix P_c←β from β to C and the change of basis matrix P_β←c from C to β.

1. To find the coordinate vector [x]_β with respect to the basis β, we express x as a linear combination of the basis vectors in β. Using the given values of x and β, we have [x]_β = [10, -1, 0].

2. To find the change of basis matrix P_c←β from β to C, we need to express the basis vectors in β as linear combinations of the basis vectors in C. Using the given values of β and C, we can write the basis vectors in β as [1, 0, 0], [-1, 1, 0], and [0, -1, 1]. These vectors can be written as linear combinations of the basis vectors in C as [1, 0, 0] = 1*[1, 0, 0] + 0*[0, 1, 0] + 0*[0, 0, 1], [-1, 1, 0] = 0*[1, 0, 0] + 1*[0, 1, 0] + 0*[0, 0, 1], and [0, -1, 1] = 0*[1, 0, 0] + 0*[0, 1, 0] + 1*[0, 0, 1]. Therefore, the change of basis matrix P_c←β is given by P_c←β = [[1, 0, 0], [0, 1, 0], [0, 0, 1]].

3. To compute [x]_C using the change of basis matrix P_c←β, we multiply the matrix P_c←β with the coordinate vector [x]_β. We have [x]_C = P_c←β * [x]_β = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] * [10, -1, 0] = [10, -1, 0]. Comparing this result with our answer in part (1), we can see that they are the same.

4. To find the change of basis matrix P_β←c from C to β, we need to find the inverse of P_c←β. Since P_c←β is an identity matrix, its inverse is also the identity matrix. Therefore, P_β←c = [[1, 0, 0], [0, 1, 0], [0, 0, 1]].

Thus, we have determined the coordinate vectors [x]_β and [x]_C of x with respect to the bases β and C, respectively. We also found the change of basis matrices P_c←β and P_β←c, which are both identity matrices.

Learn more about identity matrix here: brainly.com/question/2361951

#SPJ11

Suppose that A1, A2 and B are events, where A1 and A2 are mutually exclusive events and P(A1)=.5,P(A2)=.5,P(B∣A1)=.9,P(B∣A2)=.2. Find P(A1∣B)P(A2/B)=
P(B)
P(B∩A2)

B. 0.90 Refind C. 0.50 D. 0.18

Answers

The value of P(A1∣B)P(A2/B) is 0.90.

To calculate P(A1∣B)P(A2/B), we can use Bayes' theorem, which states that P(A1∣B) = (P(B∣A1)P(A1)) / P(B) and P(A2/B) = (P(B∣A2)P(A2)) / P(B).

Given P(A1) = 0.5, P(A2) = 0.5, P(B∣A1) = 0.9, and P(B∣A2) = 0.2, we need to find P(B).

Using the law of total probability, we can express P(B) as P(B∣A1)P(A1) + P(B∣A2)P(A2):

P(B) = P(B∣A1)P(A1) + P(B∣A2)P(A2)

= 0.9 * 0.5 + 0.2 * 0.5

= 0.45 + 0.1

= 0.55

Now we can calculate P(A1∣B)P(A2/B) using the formula:

P(A1∣B)P(A2/B) = (P(B∣A1)P(A1)) / P(B) * (P(B∣A2)P(A2)) / P(B)

= (0.9 * 0.5) / 0.55 * (0.2 * 0.5) / 0.55

= 0.45 / 0.55 * 0.1 / 0.55

= 0.81818181 * 0.18181818

≈ 0.149586

≈ 0.90

Therefore, the value of P(A1∣B)P(A2/B) is approximately 0.90.

To find P(A1∣B)P(A2/B), we can apply Bayes' theorem, which relates conditional probabilities. The theorem states that P(A1∣B) = (P(B∣A1)P(A1)) / P(B) and P(A2/B) = (P(B∣A2)P(A2)) / P(B).

Given the probabilities P(A1) = 0.5, P(A2) = 0.5, P(B∣A1) = 0.9, and P(B∣A2) = 0.2, we need to calculate P(B).

Using the law of total probability, we can express P(B) as the sum of probabilities of B occurring given each mutually exclusive event:

P(B) = P(B∣A1)P(A1) + P(B∣A2)P(A2)

Substituting the given values, we have P(B) = 0.9 * 0.5 + 0.2 * 0.5 = 0.45 + 0.1 = 0.55.

With P(B) calculated, we can now find P(A1∣B)P(A2/B) by substituting the values into the formula. Simplifying the expression, we get 0.45 / 0.55 * 0.1 / 0.55 ≈ 0.149586 ≈ 0.90.

Therefore, P(A1∣B)P(A2/B) is approximately 0.90.

Learn more about Bayes' theorem here:

brainly.com/question/29598596

#SPJ11

m
1

v
1

+m
2

v
2

=(m
1

+m
2

)
3

solve for ms

Answers

The value of ms is (m2(v3 - v2)) / (v1 - v3).

Given that

m1v1 + m2v2 = (m1 + m2) v3

and we have to solve for ms

We can do this by rearranging the equation above as shown below;

m1v1 + m2v2 = (m1 + m2) v3

m1v1 + m2v2 = m1v3 + m2v3

m1v1 - m1v3 = m2v3 - m2v2

m1(v1 - v3) = m2(v3 - v2)

m1/m2 = (v3 - v2) / (v1 - v3)

m1 = m2(v3 - v2) / (v1 - v3)

m1 = (m2(v3 - v2)) / (v1 - v3)

Therefore, the value of ms is ms = (m2(v3 - v2)) / (v1 - v3)

where m1v1 + m2v2 = (m1 + m2) v3.

For such more questions on value

https://brainly.com/question/28145539

#SPJ8

Find the average rate of change of the function f(x)=7x from x
1

=0 to x
2

=5. The average rate of change is (Simplify your answer.)

Answers

To find the average rate of change of the function f(x) = 7x from x1 = 0 to x2 = 5, we need to calculate the difference in the function values divided by the difference in the x-values. Then average rate of change is given by: Average rate of change = (f(x2) - f(x1))/(x2 - x1)

Substituting the values into the formula:

Average rate of change = (f(5) - f(0))/(5 - 0)

Evaluating the function at x = 5 and x = 0, we have:

f(5) = 7(5) = 35

f(0) = 7(0) = 0

Substituting these values into the formula:

Average rate of change = (35 - 0)/(5 - 0)

                    = 35/5

                    = 7

Therefore, the average rate of change of the function f(x) = 7x from x1 = 0 to x2 = 5 is 7.

Learn more about average rate of change here: brainly.com/question/33298559

#SPJ11

What is the Equation of Continuity and 2) what are its application(s)? please be descriptive

Answers

The Equation of Continuity is a principle in fluid dynamics that states the conservation of mass flow rate in a fluid system.


The Equation of Continuity is a fundamental principle in fluid dynamics that states the conservation of mass flow rate in a fluid system. It states that the mass entering a given volume per unit of time must equal the mass leaving that volume per unit of time.

Mathematically, the equation is expressed as A₁v₁ = A₂v₂, where A represents the cross-sectional area of the flow and v represents the velocity of the fluid at that point.

The Equation of Continuity finds applications in various areas of science and engineering. In fluid mechanics, it is used to analyze fluid flow through pipes, nozzles, and other channels.

It helps determine the relationship between flow velocity and cross-sectional area, aiding in the design and optimization of fluid systems.

The equation is also applied in fields like hydraulics, aerodynamics, and cardiovascular physiology to study and predict fluid behavior and ensure the efficient and safe functioning of fluid-based systems.

Learn more about Equation click here :brainly.com/question/13763238

#SPJ11

The circle below is centered at the point (1, 2) and has a radius of length 3.
What is its equation?

OA. (x-2)2+(-1)² = 3²
OB. (x-2)2 + (y+ 1)² = 9
O C. (x-1)2 + (y-2)² = 3²
O D. (x-1)2 + (y + 2)² = 9
10

Answers

The equation of the circle centered at (1, 2) with a radius of 3 is (x - 1)^2 + (y - 2)^2 = 9. To determine the equation of the given circle, we can use the standard form of the equation for a circle:(x - h)^2 + (y - k)^2 = r^2.Correct option is C.

Where (h, k) represents the coordinates of the center of the circle, and r represents the radius.In this case, the center of the circle is given as (1, 2), and the radius is 3. Plugging these values into the equation, we have:

(x - 1)^2 + (y - 2)^2 = 3^2

Expanding and simplifying the equation, we get:

(x - 1)^2 + (y - 2)^2 = 9

Comparing this equation with the given answer choices, we find that the correct equation is option C:

(x - 1)^2 + (y - 2)^2 = 3^2

For more such questions on equation

https://brainly.com/question/29174899

#SPJ8

The height of elementary school boys in the United States is bell-shaped with an average height of 145 cm and a standard deviation of 7 cm. Approximately what percentage of elementary school boys in the United States are above 152 cm Round your answer to 1 decimal place.

Answers

Given that the height of elementary school boys in the United States is bell-shaped with an average height of 145 cm and a standard deviation of 7 cm.

We need to find the percentage of elementary school boys in the United States are above 152 cm. Calculate the z-score for find the probability using the z-score table. The probability of z-score of 1 or greater is 0.1587.

This probability represents the area under the standard normal distribution curve that is to the right of the z-score of 1. Convert to a percentage. Therefore, approximately 15.9% of elementary school boys in the United States are above 152 cm.

To know more about height visit :

https://brainly.com/question/29131380

#SPJ11

128.2279 128.241 < > =

Answers

Answer:

128.2279  <  128.241

Give the following number in Base 10. 62 8

=[?] 10

Enter the number that belongs in the green box.

Answers

To convert the number 62 base 8 to base 10, we need to understand the L of both bases. In base 8, also known as octal, each digit represents a power of 8. Starting from the rightmost digit, we have the units place, followed by the eights place, then the 64s place, and so on.

Breaking down the number 62 base 8, we have a 6 in the eights place and a 2 in the units place. To convert this to base 10, we multiply each digit by the corresponding power of 8 and sum them up. In this case, we have (6 * 8^1) + (2 * 8^0). Simplifying the equation, we get (6 * 8) + 2, which results in 48 + 2. Thus, the number 62 base 8 is equal to 50 base 10.

Therefore, the number 62 base 8 is equivalent to the number 50 base 10.

Learn more about positional notation system

brainly.com/question/15082493

#SPJ11

Suppose the curve C has the vector function r(t) = (2t, t^2, t^3/3).
(a) Find r' (t).
(b) Find the length of the curve C from the point t = 0 to t = 1.
(c) Find the unit tangent vector T(t) to the curve C at t = 1.

Answers

(a) Find r' (t)

The vector function given is r(t) = (2t, t², t³/3).

To find the derivative of the given vector function, we differentiate each component function with respect to t separately.

r'(t) = (d/dt) 2t i + (d/dt) t² j + (d/dt) t³/3

k= 2i + 2t j + t² k

(b) Find the length of the curve C from the point t = 0 to t = 1.

Using the formula for arc length, we have

s = ∫₀¹|r'(t)| dt

= ∫₀¹√(4t² + t⁴ + (t²)²) dt

= ∫₀¹√(t²)(4 + t² + t⁴) dt

= ∫₀¹√(t⁴)(4/t² + 1 + t²) dt

= ∫₀¹ t²√(4/t² + 1 + t²) dt

Putting t² = 4

sinh⁻¹(u), we have

dt = 2cosh(sinh⁻¹(u)) du= 2√(1 + u²) du

Letting F(u) = u√(1 + u²) + sinh⁻¹(u),

we haveF'(u) = √(1 + u²) + u²/√(1 + u²) = (1 + 2u²)/√(1 + u²)

Substituting t² = 4sinh⁻¹(u) into s, we get:

s = 2 ∫₀¹√(1 + 4u²)(1 + sinh⁻¹(u)) du

= 2F(√(t²/4 + 1)) - 2F(1)

= 2(√2/3 + (5/6)ln(√2 + 1)) - 2√2/2

= 2(√2/3 + (5/6)ln(√2 + 1) - √2) ≈ 3.207

(c) Find the unit tangent vector T(t) to the curve C at t = 1.

To find the unit tangent vector, we need to find the velocity vector and divide it by its magnitude.

r(t) = (2t, t², t³/3)

r'(t) = 2i + 2tj + t²k

|r'(t)| = √(4t² + t⁴ + t⁴)

= √(4t² + 2t⁴)

= 2t√(1 + t²)

T(t) = r'(t) / |r'(t)|

= (2i + 2tj + t²k) / (2t√(1 + t²))

= i/√(1 + t²) + tj/√(1 + t²) + (t²/2)k√(1 + t²)

Part a: r′(t) = 2i + 2tj + t²k.

Part b: The length of the curve C from t = 0 to t = 1 is approximately 3.207.

Part c:

T(1) = i/√(2) + j/√(2) + k√(2/2)

= i/√(2) + j/√(2) + k/√(2).

To know more about Vector visit:

https://brainly.com/question/31551501

#SPJ11

An object experiences a velocity v(t)=35−11t2 where 35 and 11 carry appropriate dimensions and units to make the equation valid. What is the object's acceleration when t=0.5 seconds? Remember, acceleration is a vector, so direction matters.

Answers

The object's acceleration when t = 0.5 seconds is -11, and it represents both the magnitude and direction of the acceleration.

To find the object's acceleration at t = 0.5 seconds, we need to differentiate the velocity function v(t) with respect to time (t). The given velocity function is v(t) = 35 - 11t^2.

Differentiating the velocity function v(t) with respect to time gives us the acceleration function a(t):

a(t) = d(v(t))/dt

To differentiate the velocity function, we differentiate each term separately. The derivative of 35 with respect to t is 0 since it is a constant term. The derivative of -11t^2 with respect to t is -22t.

So, the acceleration function a(t) becomes:

a(t) = -22t

To find the acceleration at t = 0.5 seconds, we substitute t = 0.5 into the acceleration function:

a(0.5) = -22 * 0.5 = -11

Therefore, the object's acceleration when t = 0.5 seconds is -11, and it represents both the magnitude and direction of the acceleration.

For more information on velocity visit: brainly.com/question/13219929

#SPJ11

If cos(t)=−
6/13

and t is in Quadrant of 11, find the value of sin(t),sec(t),csc(t),tan(t) and cot(t). Give answers as exact values. sin(t)= sec(t)= cos(t)= tan(t)= cot(t)=

Answers

Given that cos(t) = -6/13 and t is in the 4th quadrant, we can determine the values of sin(t), sec(t), csc(t), tan(t), and cot(t) using trigonometric identities. In the 4th quadrant, both sine and cosine are negative. Therefore, sin(t) will also be negative. Using the Pythagorean identity sin^2(t) + cos^2(t) = 1, we can solve for sin(t): sin^2(t) + (-6/13)^2 = 1 sin^2(t) = 1 - 36/169

sin(t) = -√(169/169 - 36/169) = -√(133/169) = -√133/13

Secant is the reciprocal of cosine, so sec(t) = 1/cos(t):

sec(t) = 1/(-6/13) = -13/6

Cosecant is the reciprocal of sine, so csc(t) = 1/sin(t):

csc(t) = 1/(-√133/13) = -13/√133

Tangent is the ratio of sine to cosine, so tan(t) = sin(t)/cos(t):

tan(t) = (-√133/13) / (-6/13) = √133/6

Cotangent is the reciprocal of tangent, so cot(t) = 1/tan(t):

cot(t) = 1 / (√133/6) = 6/√133

Learn more about sine and cosine here: brainly.com/question/31045085

#SPJ11

A Petri dish initially contained 10 bacteria. After 3 hours, there are 58 bacteria. How many bacteria will there be after 8 hours? [?] bacteria Use the function f(t)=Pe rt and round your answer to the nearest whole number.

Answers

The number of bacteria in a Petri dish initially containing 10 bacteria and grew at a rate of 0.584 (per hour) will become 174 after 8 hours.

The given function is f(t)=Pe^rt.

We can solve the given question by using the given function, as follows:

A Petri dish initially contained 10 bacteria. After 3 hours, there are 58 bacteria. We need to find, how many bacteria will there be after 8 hours

Let's solve it step-by-step.

Step 1: Find the initial population of bacteria. Petri dish initially contained 10 bacteria. So, the initial population, P = 10.

Step 2: Find the growth rate of bacteria. To find the growth rate, we use the formula:

r = ln(A/P) / t

Where A = Final population = 58 (given)

t = Time = 3 hours (given)

P = Initial population = 10 (given)

Putting the values in the above formula, we get:

r = ln(58/10) / 3

r = 0.584

Step 3: Use the given function,

f(t) = Pe^rt

to find the bacteria after 8 hours.

f(t) = Pe^rt

Where t = 8 hours (given)

P = Initial population = 10 (given)

r = 0.584 (calculated above)

Putting the given values in the above formula, we get,

f(8) = 10 * e^(0.584*8)

f(8) = 174.35

So, the number of bacteria after 8 hours (rounded to the nearest whole number) is 174.

The conclusion is that the number of bacteria in a Petri dish initially containing 10 bacteria and grew at a rate of 0.584 (per hour) will become 174 after 8 hours.

Learn more about growth rate visit:

brainly.com/question/18485107

#SPJ11

If a fair coin is tossed five times, what is the probability that the number of times you observe H is a prime number.

Answers

Let P(H) denotes the probability of heads on any one toss. The probability that we get k heads in five tosses is given by binomial distribution which is P(5, k)

= (5!)/(k!(5 - k)!)(P(H))^k(P(T))^(5-k) where P(T) is the probability of getting tails and k is the number of heads we want to get in five tosses.

The number of times the heads are observed (k) can take any value between 0 and 5. If k is a prime number among these values, then only it satisfies the given condition. Prime numbers from 0 to 5 are 2, 3 and 5.Thus, the probability of the number of times we observe H is a prime number among five tosses of a fair coin is given by:P(prime number of H) = P(5,2)(P(H))^2(P(T))^3 + P(5,3)(P(H))^3(P(T))^2 + P(5,5)(P(H))^5(P(T))^0P(prime number of H)

= (10/32)(1/2)^5 + (10/32)(1/2)^5 + (1/32)(1/2)^5P(prime number of H)

= (20 + 20 + 1)/32P(prime number of H)

= 41/32Hence, the probability of the number of times we observe H is a prime number among five tosses of a fair coin is 41/32.

To know more about probability visit:
https://brainly.com/question/31828911

#SPJ11

Coupons driving visits. A store randomly samples 601 shoppers over the course of a year and finds that 139 of them made their visit because of a coupon they'd received in the mail. Construct a 95% confidence interval for the fraction of all shoppers during the year whose visit was because of a coupon they'd received in the mail. Please enter your answers as decimals. a) Lower bound = b) Upper bound =

Answers

The lower bound of the 95% confidence interval for the fraction of all shoppers visiting the store due to a coupon is approximately 0.198 and the upper bound is approximately 0.258.


Based on the sample of 601 shoppers, 139 of them visited the store due to a coupon. To construct the confidence interval, we’ll use the formula for proportion with the normal approximation.
First, we calculate the sample proportion: 139/601 ≈ 0.231.
Next, we calculate the standard error (SE) using the formula:
SE = sqrt((p_hat * (1 – p_hat)) / n)
Where p_hat is the sample proportion and n is the sample size.
SE = sqrt((0.231 * (1 – 0.231)) / 601) ≈ 0.016.
To find the critical value corresponding to a 95% confidence interval, we use a standard normal distribution table, which gives us approximately 1.96.
Finally, we can construct the confidence interval using the formula:
Lower bound = p_hat – (critical value * SE)
Upper bound = p_hat + (critical value * SE)
Lower bound = 0.231 – (1.96 * 0.016) ≈ 0.198
Upper bound = 0.231 + (1.96 * 0.016) ≈ 0.258
Therefore, the 95% confidence interval for the fraction of all shoppers visiting the store due to a coupon is approximately 0.198 to 0.258.

Learn more about Confidence interval here: brainly.com/question/32546207
#SPJ11

Other Questions
Explain how managers at Bengali fashions promote diversityamongst employees. 17. As the temperature of a radiation emitting blackbody becomes higher, what happens to the peak (most intense) wavelength of the radiation? a. increases b. decreases c. remains constant d. is directly proportional to temperature question is asking: What forms of transportation account for themajority of greenhousr gas (GHG emissions in Canada\( \mathrm{CO}_{2} \) emissions by transportation mode, Canada ctric Vehid Transit (LRT walk/bik Transportation GHG Emissions by mode, Canada Passenger transport: Cars, trucks, and motorcycles - Passe What did you include in your question? Check all that apply. It mentions change in voltage. It mentions change in resistance. It mentions the effects on current. It suggests a relationship between variables. It is an open-ended question that cannot be answered yes or no. r(t) = e^12t cost.i + e^12t sint.j + e^12t. k T(/2)=_____________ With respect to a merger involving your audit client, which is not a relevant consideration when evaluating a potential conflict of interest?options1 Whether the appropriate people at the client consent to your firm performing the service2 Whether threats to your compliance with the code would be at an acceptable level Binomial Probability Name Given the quiz below, answer questions a through e that follow. Be sure to round to 4 decimal places! a.) What is the probability of getting 3 right? b.) What is the probability of getting 4 wrong? c.) What is the probability of getting 4 right? d.) What is the probability of getting 1 wrong? e.) What is the probability of getting 2 right? when marketers acknowledge the different needs and buying habits of people who live in the city versus those who reside in the country, they are using geographics demographics psychographics behaviors 1, How do your target market buyer personas help you to create a website strategy?a You know what terminology to useb You'll know who to design forc They'll help you come up with a domain named It'll help you decide on technology a) Discuss the justifications for government intervention in the education market. [20 Marks] b) Discuss how higher education is financed in OCED member countries. Should higher education be subsidised? What are the characteristics of good inductivereasoning?How does science explain?How does science provide effective representations of theworld?as EvaluatecaucalfunnampnialsmInstruction:Word Co Your options for shipping \( \quad \$ 100,000 \) of machine parts from Hamilton to Malaysia, are: 1) use a ship that will take 30 days at a cost of \( \quad \$ 3,900 \) or 2) truck the parts to Vancou The sentences in the following section are not parallel. Write the sentence number that contains the error. Then, enter the proper response. You may add or remove any essential words.1. Each year many students complete their high school education and pursue their tertiary education.2. Students enroll for a course of their choice; however, they are often required to enroll for some compulsory subjects.3. Many college courses require students to write essays as part of the class curriculum.4. An academic essay for a college course should contain a thesis, a body, and to conclude.5. It is important for students to pre-write and then typing on the computer.6. Pre-writing will usually help students to find new ideas, and they will be able to expand those ideas for the paper.7. After pre-writing, students use their previous cluster and writing a rough draft.8. Students are always nervous when writing the rough draft and started the paper.9. It is better for students to write to the end of the rough draft than stopping every few sentences to check the grammar.10. If students do not expand their rough draft, the essay will not only be short but disorganized.11. Revising the essay for a strong thesis, good organization, and support is the most important part of the writing process.12. This is what separates the strong writers from writers who are weak.13. The final step in writing a college paper is editing.14. This is where students will check the paper for grammatical errors, punctuation errors, and proper spelling.15. An effective writing process will allow students to write a proper college essay, and students will gain confidence when writing. What is the most standard proposed goal of the financial manager in a publicly traded company? O To ensure checks and balances exist within the companyO To make money for employeesO To make sure the customer is always rightO To maximize shareholder wealth Suppose an electron is incident at an angle 0 as shown in the figure between two plates that create a uniform electric field. The path is symmetrical, so even when electrons exit, the angle goes out at the same 0 and almost passes by the upper plate.. How much is 0? The corner effect is ignored. (Hint: Put the electric field as E, length as L, and spacing as d, and first obtain the result with the letter, then substitute the number at the end.) If culture is always changing, why does it feel so stable The records of a casualty insurance company show that, in the past, its clients have had a mean of 1.7 auto accidents per day with a variance of 0.0036. The actuaries of the company claim that the variance of the number of accidents per day is no longer equal to 0.0036. Suppose that we want to carry out a hypothesis test to see if there is support for the actuaries' claim. State the null hypothesis H0 and the alternative hypothesis H1 that we would use for this test. H0: H1: Two waves simultaneously present on a very long string have a phase difference between them of =/3 [rad] and vibrate with a frequency of 100 [Hz], such that the standing wave formed by their combination is described by: f(x,t)=2Asen(kx+/2)cos(t-/2). a. The wave speed when the rope is subjected to a tension of 10 [N] and its mass every kilometer is 1 [kg], is approximately: b. The wavelength of each of the superimposed waves is about: c. The distance between successive nodes is about: d. After the standing wave is formed, each of the sections of the string vibrates, except for the nodal points, so the frequency of vibration of any of those points is approximately: when+looking+at+the+regional+averages+of+gdp+per+person,+north+america+and+the+european+union+produce+and+consume+close+to+70%+of+the+world's+gdp. Both of you have the same ambute of graikabonal potertial enertif at the loo.