Answer:
always runs slower than normal.
Explanation:
The basic concept of theory of relativity was given famous scientist, Albert Einstein. The relativity theory provides the theory of space and time, which are the two aspects of spacetime.
According to the theory of relativity, the laws of physics are same for all the non-accelerating observers.
In the context, according to the theory of relativity, a moving clock relative tot a stationary observer always runs slower than the normal time.
Ashley, a psychology major, remarks that she has become interested in the study of intelligence. In other words, Ashley is interested in?
Group of answer choices.
a) the capacity to learn from experience, solve problems, and to adapt to new situations.
b) how behavior changes as a result of experience.
c) the factors directing behavior toward a goal.
d) the ability to generate novel
Answer:
a) the capacity to understand the world, think rationally, and use resources effectively.
Explanation:
Psychology can be defined as the scientific study of both the consciousness and unconsciousness of the human mind such as feelings, emotions and thoughts, so as to understand how it functions and affect human behaviors in contextual terms.
This ultimately implies that, psychology focuses on studying behaviors and the mind that controls it.
In this scenario, Ashley who is a psychology major, stated that she's interested in the study of intelligence.
Intelligence can be defined as a measure of the ability of an individual to think, learn, proffer solutions to day-to-day life problems and effectively make informed decisions.
In other words, Ashley is interested in the capacity of humans to understand the world, think rationally, and use resources effectively to produce goods and services that meet the unending requirements, needs or wants of the people (consumers or end users) living around the world.
A surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks x = 106 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is = 32.8°. How wide is the river?
Answer:
x = 68.3 m
Explanation:
tan 32.8 = x / 106
Which of the following behaviors would best describe someone who is listening and paying attention? a) Leaning toward the speaker O b) Interrupting the speaker to share their opinion c) Avoiding eye contact d) Asking questions to make sure they understand what's being said
Answer:
D
Explanation:
Anyone could be leaning forward toward the speaker but be distracted and I believe if you're paying attention to the speaker, you would ask questions to make sure you're understanding what they are speaking
Answer:
A
.............................
Một loa phát ra với cường độ âm là 40 (W/m2
). Mức cường độ âm của loa thuộc phạm vi?
Answer:ew
Explanation:
qeeqw
A boy walks from point C to point D which is 50 m apart. Then, he walks back to point C. what is his displacement of his whole journey ?
A.25 m
B.75 m
C.50 m
D.0 m
Answer: D. 0 m
Explanation:
Concept:
Here, we need to know the concept of displacement.
Displacement is defined to be the change in position of an object.
The difference between displacement and distance is the total movement of an object without any regard to direction, while displacement is the pure change of position.
If you are still confused, please refer to the attachment below for a graphical explanation.
Solve:
STEP ONE: the boy walks from point C to point D (a distance of 50 m)
C ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ D
50 m
STEP TWO: the boy walks from point D to point C (a distance of 50 m)
D ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ C
50 m
STEP THREE: find the displacement
The boy started with point C
The boy ended with point C
He did not change his position throughout the journey.
Therefore, his displacement is 0 m.
Hope this helps!! :)
Please let me know if you have any questions
1 Poin Question 4 A 85-kg man stands in an elevator that has a downward acceleration of 2 m/s2. The force exerted by him on the floor is about: (Assume g = 9.8 m/s2) А ON B 663 N C) 833 N D) 1003 N
Answer:
D) 1003 N
Explanation:
Given the following data;
Mass of man = 85 kg
Acceleration of elevator = 2 m/s²
Acceleration due to gravity, g = 9.8 m/s²
To find the force exerted by the man on the floor;
Force = mg + ma
A man throw a ball vertically up word with an intial speed 20m/s. What is the maximum height rich by the ball and how long does it take to return to the point it was trow
Answer:
u=20 m/s, T=4s
Explanation:
Given final velocity v= 0 m/s and displacement h= 20 m; acceleration due to gravity = 10 m/ s 2
From equation of motion
v2=u2+2gs−u2=−2(10).20u=20m/s
and time t can be determined by the formula
t=gv−u=−10−20=2s
total time = 2× time of ascend=2×2=4s
it is helpful for you
A plastic dowel has a Young's Modulus of 1.50 ✕ 1010 N/m2. Assume the dowel will break if more than 1.50 ✕ 108 N/m2 is exerted. What is the maximum force (in kN) that can be applied to the dowel assuming a diameter of 2.30 cm?
A.
52.3 kN
B.
62.3 kN
C.
72.3 kN
D.
42.3 N
Answer:
cobina
Explanation:
me 2
An object is made of glass and has the shape of a cube 0.13 m on a side, according to an observer at rest relative to it. However, an observer moving at high speed parallel to one of the object's edges and knowing that the object's mass is 3.3 kg determines its density to be 8100 kg/m3, which is much greater than the density of glass. What is the moving observer's speed (in units of c) relative to the cube
Answer:
[tex]v=0.9833\ c[/tex]
Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,
[tex]$\text{Density} = \frac{m}{lwh}$[/tex]
Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 [tex]kg/m^3[/tex]
So,
[tex]$8100=\frac{3.3}{l \times 0.13 \times 0.13}$[/tex]
[tex]$l=\frac{3.3}{8100 \times 0.13 \times 0.13}$[/tex]
l = 0.024 m
Then for relativistic length contraction,
[tex]$l= l' \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.024= 0.13 \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.184= \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.033= 1-\frac{v^2}{c^2}}$[/tex]
[tex]$\frac{v^2}{c^2}= 0.967$[/tex]
[tex]$\frac{v}{c}=0.9833$[/tex]
[tex]v=0.9833\ c[/tex]
Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).
Convert the unit of 0.00023 kilograms into grams. (Answer in scientific notation)
Answer:
2.3 × [tex]10^{-1}[/tex]
Explanation:
1 kg = 1000 g.
0.00023 kg x 1000 g = 0.23 grams
Answer:
0.23×10⁴
Explanation:
kilogram to gram ÷ 1000
0.00023kg ÷ 1000
=0.23g
scientific notation=0.23×10⁴
The resistance of a thermistor over a limited range of temperature is given by the equation R= ( c/T-203 )where c is a constant and T is the absolute temperature. What will be the temperature on the Celsius scale of the thermistor at absolute temperature of T = 300K?
Temperature in kelvin scale=300k
We know
[tex]\boxed{\sf 0°C=273K}[/tex]
[tex] \\ \Large\sf\longmapsto 300K[/tex]
[tex] \\ \Large\sf\longmapsto 300-273[/tex]
[tex] \\ \Large\sf\longmapsto 27°C[/tex]
Identify the factors that affect the intensity of radiation detected from a radioactive source. Select one or more: The color of the source Type of emission from the source Distance of the detector from the source Type of materials between the source and the detector
The intensity of radiation is the defined as amount of energy per surface angle which can be used to determine the amount of energy emitting from a source that will hit another surface.
The factors that affect the intensity of radiation are
Type of emission from the source :This can be alpha, gamma, beta or electromagnetic rays etc
Distance of the detector from the source: The shorter the distance between the source and the detector, the more the effect and vice versa for the longer the distance.
Type of materials between the source and the detector: The type of material between the source and the detector will tell how absorbing and penetrating the radiation is.
Read more on Radiation Intensity here: https://brainly.com/question/10148635
A uniform disk turns at 3.6 rev/s around a frictionless spindle. A non rotating rod, of the same mass as the disk and length equal to the disk's diameter, is dropped onto the freely spinning disk . They then both turn around the spindle with their centers superposed.
What is the angular frequency in rev/s of the combination?
please express answer in proper significant figures and rounding.
Answer:
ω₁ = 2.2 rev/s
Explanation:
Conservation of angular momentum
moment of inertia uniform disk is ½mR²
moment of inertia uniform rod about an end mL²/3
We can think of our rod as two rods of mass m/2 and length R
L = ½mR²ω₀
L = (½mR² + 2(m/2)R²/3)ω₁
ω₁ = ω₀(½mR² / (½mR² + mR²/3))
ω₁ = ω₀(½ / (½ + 1/3))
ω₁ = 0.6ω₀
ω₁ = 2.16
A physical pendulum in the form of a planar object moves in simple harmonic motion with a frequency of 0.680 Hz. The pendulum has a mass of 2.00 kg, and the pivot is located 0.340 m from the center of mass. Determine the moment of inertia of the pendulum about the pivot point.
Answer:
Therefore, the moment of inertia is:
[tex]I=0.37 \: kgm^{2} [/tex]
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
[tex]T=2\pi \sqrt{\frac{I}{Mgd}}[/tex] (1)
Where:
I is the moment of inertiaM is the mass of the pendulumd is the distance from the center of mass to the pivotg is the gravityLet's solve the equation (1) for I
[tex]T=2\pi \sqrt{\frac{I}{Mgd}}[/tex]
[tex]I=Mgd(\frac{T}{2\pi})^{2}[/tex]
Before find I, we need to remember that
[tex]T = \frac{1}{f}=\frac{1}{0.680}=1.47\: s[/tex]
Now, the moment of inertia will be:
[tex]I=2*9.81*0.340(\frac{1.47}{2\pi})^{2}[/tex]
Therefore, the moment of inertia is:
[tex]I=0.37 \: kgm^{2} [/tex]
I hope it helps you!
A redox reaction is always a single-displacement reaction, but a single-
displacement reaction isn't always a redox reaction.
A. True
B. False
SUBMIT
The potential difference between the plates of a capacitor is 234 V. Midway between the plates, a proton and an electron are released. The electron is released from rest. The proton is projected perpendicularly toward the negative plate with an initial speed. The proton strikes the negative plate at the same instant the electron strikes the positive plate. Ignore the attraction between the two particles, and find the initial speed of the proton.
I have tried looking at the cramster.com solution manual and do not like the way it is explained. Simply put, I cannot follow what is going on and I am looking for someone who can explain it in plain man's terms and help me understand and get the correct answer. I am willing to give MAX karma points to anyone who can help me through this. Thank you kindly.
Answer:
The speed of proton is 2.1 x 10^5 m/s .
Explanation:
potential difference, V = 234 V
let the initial speed of the proton is v.
The kinetic energy of proton is
KE = q V
[tex]0.5 mv^2 = e V \\\\0.5\times 1.67\times 10^{-27} v^2 = 1.6\times 10^{-19} \times 234\\\\v=2.1\times 10^5 m/s[/tex]
When you are standing on Earth, orbiting the Sun, and looking at a broken cell phone on the ground, there are gravitational pulls on the cell phone from you, the Earth, and the Sun. Rank the gravitational forces on the phone from largest to smallest. Assume the Sun is roughly 109 times further away from the phone than you are, and 1028 times more massive than you. Rank the following choices in order from largest gravitational pull on the phone to smallest. To rank items as equivalent, overlap them.
a. Pull phone from you
b. Pull on phone from earth
c. Pull on phone from sun
Answer:
The answer is "Option b, c, and a".
Explanation:
Here that the earth pulls on the phone, as it will accelerate towards Earth when we drop it.
We now understand the effects of gravity:
[tex]F \propto M\\\\F\propto \frac{1}{r^2}\\\\or\\\\F \propto \frac{M}{r^2}\\\\Sun (\frac{M}{r^2}) = \frac{10^{28}}{(10^9)^2} = 10^{10}[/tex]
The force of the sun is, therefore, [tex]10^{10}[/tex] times greater and the proper sequence, therefore, option steps are:
b. Pull-on phone from earth
c. Pull-on phone from sun
a. Pull phone from you
A space ship has four thrusters positioned on the top and bottom, and left and right as shown below. The thrusters can be operated independently or together to help the ship navigate in all directions.
Initially, the Space Probe is floating towards the East, as shown below, with a velocity, v. The pilot then turns on thruster #2.
Select one:
a.
Space ship will have a velocity to the West and will be speeding up.
b.
Space ship will have a velocity to the East and will be speeding up.
c.
Space ship will have a velocity to the East and will be slowing down.
d.
Space ship will have a velocity to the West and will be slowing down.
e.
Ship experiences no change in motion.
Answer:
The correct answer is - c. Spaceship will have a velocity to the East and will be slowing down.
Explanation:
In this case, if turned on thruster #2 then it will exert force on the west side as thruster 2 is on the east side and it can be understood by Newton's third law that says each action has the same but opposite reaction.
As the spaceship engine applies force on the east side then according to the law the exhauster gas applies on towards west direction. It will try to decrease the velocity of the spaceship however, the direction of floating still be east side initally.
Two train 75 km apart approach each other on parallel tracks, each moving at
15km/h. A bird flies back and forth between the trains at 20km/h until the trains pass
each other. How far does the bird fly?
Answer:
The correct solution is "37.5 km".
Explanation:
Given:
Distance between the trains,
d = 75 km
Speed of each train,
= 15 km/h
The relative speed will be:
= [tex]15 + (-15)[/tex]
= [tex]30 \ km/h[/tex]
The speed of the bird,
V = 15 km/h
Now,
The time taken to meet will be:
[tex]t=\frac{Distance}{Relative \ speed}[/tex]
[tex]=\frac{75}{30}[/tex]
[tex]=2.5 \ h[/tex]
hence,
The distance travelled by the bird in 2.5 h will be:
⇒ [tex]D = V t[/tex]
[tex]=15\times 2.5[/tex]
[tex]=37.5 \ km[/tex]
A) In terms of electrolysis, it’s been said from multiple sources online that “Using water's density and relative atomic populations, it is estimated by a mass balance that approximately 2.38 gallons of water are consumed as a feedstock to produce 1 kg of hydrogen gas (14.13 liters), assuming no losses.”
B) However, 1 Gallon of water is said to contain approximately 4,707 liters of hydrogen.
How can both statements be correct under normal atmospheric conditions, since even with 80% efficiency of current PEM electrolyzers the first statement (A) is nowhere near the +4,000 liters of the second approximation (B)?
Answer:
hhhhhhhjjjkkllkcftkbgfjknhglncg
What is the primary purpose of politics?
Answer:
a politician is a person active in party politic or person holding os seeking an elected seat in government.politicans purpose, support,and create laws that govern the land and by extension ,it's people.
Which of the following is not true about Triton, the large moon of Neptune? It is more reflective than Earth's Moon. It is larger than Earth's Moon. It is in a retrograde orbit. It has a thin atmosphere. It has nitrogen geysers.
Answer:
Triton is the largest of Neptune's 13 moons. It is unusual because it is the only large moon in our solar system that orbits in the opposite direction of its planet's rotation―a retrograde orbit. ... Like our own moon, Triton is locked in synchronous rotation with Neptune―one side faces the planet at all times.
b. Block on an incline
A block of mass mı = 3.9 kg on a smooth inclined plane of angle 38° is connected by a cord over a small frictionless
pulley to a second block of mass m2 = 2.6 kg hanging vertically. Take the positive direction up the incline and use 9.81
m/s2 for g.
What is the tension in the cord to the nearest whole number?
Block on the incline:
• net force parallel to the incline
∑ F (para.) = m₁ g sin(38°) - T = m₁ a
where T is the magnitude of tension in the cord.
Notice that we take down-the-incline to be the positive direction, so that if the 3.9-kg block pulls the 2.6-kg block upwards, then the acceleration of the system is positive.
Suspended block:
• net vertical force
∑ F (vert.) = T - m₂ g = m₂ a
Solve both equations for the acceleration a, set the results equal to one another, and solve for T :
a = g sin(38°) - T/m₁
a = T/m₂ - g
==> g sin(38°) - T/m₁ = T/m₂ - g
==> T (1/m₂ + 1/m₁) = g (sin(38°) + 1)
==> T = g (sin(38°) + 1) / (1/m₂ + 1/m₁)
==> T = (9.81 m/s²) (sin(38°) + 1) / (1/(2.6 kg) + 1/(3.9 kg)) ≈ 25 N
In Young's double slit experiment, 402 nm light gives a fourth-order bright fringe at a certain location on a flat screen. What is the longest wavelength of visible light that would produce a dark fringe at the same location? Assume that the range of visible wavelengths extends from 380 to 750 nm.
Answer:
λ₂ = 357.3 nm
Explanation:
The expression for double-slit interference is
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference.
The initial data corresponds to a constructive interference, they indicate that we are in the fourth order (m = 4), let's look for the separation of the slits
d sin θ = m λ₁
now ask for destructive interference for m = 4
d sin θ = (m + ½) λ₂
we match these two expressions
m λ₁ = (m + ½) λ₂
λ₂ = ( m / m + ½) λλ₁
let's calculate
λ₂ =[tex]\frac{4}{(4.000 +0.5) \ 401}[/tex]
λ₂ = 357.3 nm
A 1.5kg block slides along a frictionless surface at 1.3m/s . A second block, sliding at a faster 4.3m/s , collides with the first from behind and sticks to it. The final velocity of the combined blocks is 2.0m/s . What was the mass of the second block?
Answer:
The mass of the second block=0.457 kg
Explanation:
We are given that
m1=1.5 kg
v1=1.3m/s
v2=4.3 m/s
V=2.0 m/s
We have to find the mass of the second block.
[tex]m_1v_1+m_2v_2=(m_1+m_2)V[/tex]
Let m2=m
Substitute the values
[tex]1.5(1.3)+m(4.3)=(1.5+m)(2)[/tex]
[tex]1.95+4.3m=3+2m[/tex]
[tex]4.3m-2m=3-1.95[/tex]
[tex]2.3m=1.05[/tex]
[tex]m=\frac{1.05}{2.3}[/tex]
[tex]m=0.457 kg[/tex]
Hence, the mass of the second block=0.457 kg
Difference between uniform motion and non uniform motion
Answer:
When an object covers equal distance in an equal interval of time, it is uniform motion but when an object covers unequal distance in an equal interval of time, it is called non uniform motion.
.. Solve: 91
Find the half angular width of the central bright maximum in the Fraunhofer diffraction pattern of
a slit of width 12x10^-5 cm when the slit illuminated by monochromatic light of wave length
6000 A
[KUET’10-11)
(a) 30°
(b) 60°
(c) 15°
(d) None of these
Solution
Explanation:
bro I have no idea fam......
The graph below shows a cycle of a heat engine. Add the following labels to the graph. Some labels are used more than once.
Labels: Isobaric process; W= 0J; Work done on the system; Work done by the system.
I will give brainliest!
P.S. AL2006 if you see this please help!
I'm not very good at this material. I'll try it, but if I were you, I wouldn't bet money on these answers.
"Isobaric" means constant pressure. So those are the horizontal lines, where every point on the line is at the same pressure. Those are the processes 1>2 and 3>4 .
I'm going around and around in my mind with the other labels, and I can't decide. So I'm afraid I can't answer any more of them ... they might be wrong.
Answer:
1 -> 2 & 3 -> 4: Isobaric process
4 -> 1: Work done BY the system
2 -> 3: Work done ON the system
W(total): W = 0J
Explanation:
The two horizontal lines (1 -> 2 & 3 -> 4) are "Isobaric" since isobaric processes take place at constant pressure. I believe 4 -> 1 is "Work done BY the system" since pressure increases when there is an increase of thermal energy, in other words, the system is absorbing heat. This is why the volume increases from 1 -> 2 after the system has absorbed heat in 4 -> 1. Following the directions of the arrows, 2 -> 3 would be "Work done ON the system" since pressure is DECREASING, meaning temperature is also exiting the system. That's why the next step (3 -> 4) shows a decrease in volume. This model depicts a process that has a W(total) of 0 J because this is a cycle.
I hope this helps :))
Two loudspeakers, 5.5 m apart and facing each other, play identical sounds of the same frequency. You stand halfway between them, where there is a maximum of sound intensity. Moving from this point toward one of the speakers, you encounter a minimum of sound intensity when you have moved 0.25 m . Assume the speed of sound is 340 m/s.
Required:
a. What is the frequency of the sound?
b. If the frequency is then increased while you remain 0.21 m from the center, what is the first frequency for which that location will be a maximum of sound intensity?
c.
Solution :
Let [tex]$d_1=\frac{5.5}{2}[/tex]
= 2.75 m
[tex]d_2 = 0.21 \ m[/tex]
And [tex]$d=|d_1-d_2|$[/tex]
[tex]$d=(d_1+d_2) - (d_1-d_2)$[/tex]
[tex]$d=(2.75+0.21) - (2.75-0.21)$[/tex]
[tex]$d = 2.96-2.54$[/tex]
[tex]d = 0.42 \ m[/tex]
a). At minimum,
[tex]$d=\frac{\lambda}{2}$[/tex]
[tex]$\lambda = 2d$[/tex]
= 2 x 0.42
= 0.84 m
Frequency, [tex]$\nu = \frac{v}{\lambda}$[/tex]
[tex]$=\frac{340}{0.84}$[/tex]
= 404.76 Hz
Therefore, the frequency of he sound, [tex]$\nu$[/tex] = 404.76 Hz
b). At maximum, λ = d = 0.42 m
Therefore, the frequency, [tex]$\nu = \frac{v}{\lambda}[/tex]
[tex]$=\frac{350}{0.42}$[/tex]
= 809.52 Hz
Two 51 g blocks are held 30 cm above a table. As shown in the figure, one of them is just touching a 30-long spring. The blocks are released at the same time. The block on the left hits the table at exactly the same instant as the block on the right first comes to an instantaneous rest. What is the spring constant?
The concept of this question can be well understood by listing out the parameters given.
The mass of the block = 51 g = 51 × 10⁻³ kgThe distance of the block from the table = 30 cmLength of the spring = 30 cmThe purpose is to determine the spring constant.
Let us assume that the two blocks are Block A and Block B.
At point A on block A, the initial velocity on the block is zero
i.e. u = 0
We want to determine the time it requires for Block A to reach the table. The can be achieved by using the second equation of motion which can be expressed by using the formula.
[tex]\mathsf{S = ut + \dfrac{1}{2}gt^2}[/tex]
From the above formula,
The distance (S) = 30 cm; we need to convert the unit to meter (m).
Since 1 cm = 0.01 mThen, 30cm = 0.3 mThe acceleration (g) due to gravity = 9.8 m/s²
∴
inputting the values into the equation above, we have;
[tex]\mathsf{0.3 = (0)t + \dfrac{1}{2}*(9.80)*(t^2)}[/tex]
[tex]\mathsf{0.3 = \dfrac{1}{2}*(9.80)*(t^2)}[/tex]
[tex]\mathsf{0.3 =4.9*(t^2)}[/tex]
By dividing both sides by 4.9, we have:
[tex]\mathsf{t^2 = \dfrac{0.3}{4.9}}[/tex]
[tex]\mathsf{t^2 = 0.0612}[/tex]
[tex]\mathsf{t = \sqrt{0.0612}}[/tex]
[tex]\mathbf{t =0.247 \ seconds}[/tex]
However, block B comes to an instantaneous rest on point C. This is achieved by the dropping of the block on the spring. During this process, the spring is compressed and it bounces back to oscillate in that manner. The required time needed to get to this point C is half the period, this will eventually lead to the bouncing back of the block with another half of the period, thereby completing a movement of one period.
By applying the equation of the time period of a simple harmonic motion.
[tex]\mathbf{T = 2 \pi \sqrt{\dfrac{m}{k}}}[/tex]
where the relation between time (t) and period (T) is:
[tex]\mathsf{t = \dfrac{T}{2}}[/tex]
T = 2t
T = 2(0.247)
T = 0.494 seconds
[tex]\mathbf{T = 2 \pi \sqrt{\dfrac{m}{k}}}[/tex]
By making the spring constant (k) the subject of the formula:
[tex]\mathbf{\dfrac{T}{2 \pi } = \sqrt{ \dfrac{m}{k}}}[/tex]
[tex]\Big(\dfrac{T}{2 \pi }\Big)^2 = { \dfrac{m}{k}[/tex]
[tex]\dfrac{T^2}{(2 \pi)^2 }= { \dfrac{m}{k}[/tex]
[tex]\mathsf{ T^2 *k = 2 \pi^2*m} \\ \\ \mathsf{ k = \dfrac{2 \pi^2*m}{T^2}}[/tex]
[tex]\mathsf{ k =\Big( \dfrac{(2 \pi)^2*(51 \times 10^{-3})}{(0.494)^2} \Big) N/m}[/tex]
[tex]\mathbf{ k =8.25 \ N/m}[/tex]
Therefore, we can conclude that the spring constant between the two 51 g blocks held at a distance 30 cm above a table as a result of instantaneous rest caused by the compression of the spring is 8.25 N/m.
Learn more about simple harmonic motion here:
https://brainly.com/question/17315536?referrer=searchResults