If the first stage provides a thrust of 5.25 mega-newtons [MN] and the space shuttle has a mass of 4,470,000 pound-mass [lbm], what is the acceleration of the spacecraft in miles per hour squared [mi/h2]

Answers

Answer 1

Answer:

20,861.65 mi/h²

Explanation:

We convert  4,470,000 pound-mass [lbm], to kg. Since  2.205 lbm = 1 kg, then 4,470,000 lbm = 4,470,000 lbm × 1 kg/2.205 = 2,027,210.88 kg

Since Force , F = ma where m = mass and a = acceleration, and our force of thrust , F = 5.25 MN = 5,250,000 N and or mass = mass of spacecraft = 2,027,210.88 kg, we then find the acceleration, a.

a = F/m = 5,250,000 N/2,027,210.88 kg = 2.59 m/s².

We now convert this acceleration into miles per hour. Since 1 mile = 1609 meters and 60 × 60 s = 1 hour ⇒ 3600 s = 1 hour, Our conversion factor for meter to mile is 1 mile/1609 m and that for second to hour is 3600 s/1 hour. We square the conversion factor for the time so we have (3600 s/1 hour)².

Multiplying both conversion factors with our acceleration, we have

a = 2.59 m/s²

= 2.59 m/s² × 1 mile/1609 m × (3600 s/1 hour)²

= 33566440/1609 miles/hour²

= 20,861.65 mi/h²

= 20,861.65 miles per hour squared


Related Questions

A particle with charge q = +5.00 C initially moves at v = (1.00 î + 7.00 ĵ ) m/s. If it encounters a magnetic field B = 10 k, find the magnetic force vector on the particle.

Answers

Given :

Force on object moving with constant velocity due to magnetic field is given by :

[tex]\vec{F}=q\vec{v}\times \vec{B}\\\\\vec{F}=-5[ ( \hat{i} + 7\hat{j}) \times ( 10\hat{k})]\\\\\vec{F}=-5[ 10(-\hat{j})+70(\hat{i})]\\\\\vec{F}=50\hat{j}-350\hat{i}\ N[/tex]

Now,

[tex]F = \sqrt{50^2+350^2}\\\\F=353.55\ N[/tex]

Hence, this is the required solution.

A particle with charge q = +5.00 C that is moving with some velocity, then the magnetic force vector on the particle will be 353.55 N.

What is a vector?

The phrase "vector" in physics and mathematics is used popularly to refer to some values that cannot be stated by a simple integer (a scalar) or to certain elements of high - dimensional space.

For things like displacements, forces, and velocity can have both a magnitude and direction, vectors were initially introduced in geometry and physics. Similar to how lengths, masses, and time are represented by real numbers, these quantities were represented by geometric vectors.

In some contexts, tuples—finite sequences of numbers with a definite length—are sometimes referred to as vectors.

From the data given in the question,

F = qv × B

F = -5 [(î +7 ĵ) ×(10 k)]

F = 50 ĵ - 350 î N

Now, calculate the force,

F = √50² + 350²

F = 353.55 N.

To know more about Vector:

https://brainly.com/question/13322477

#SPJ5

A 80-kg person stands at rest on a scale while pulling vertically downwards on a rope that is above them. Use g = 9.80 m/s2.

With what magnitude force must the tension in the rope be pulling on the person so that the scale reads 25% of the persons weight?

Answers

Answer:

The tension in the rope is 588 N

Explanation:

I have attached a free body diagram of the problem.

First we calculate the force applied downwards by the person's weight:

[tex]F_{weight} =m*a = 80 kg * 9.8 \frac{m}{s^{2}} = 784 N[/tex]

If the scale reads a 25% of the person' weight:

[tex]F_{Scale} = F_{weight}*0.25=784N*0.25=196N[/tex]

which is the same value (but opposite) to the effective weight of the persons ([tex]F_{Person}=-F_{Scale}[/tex])

The other 75% of the total weight is the force of the rope pulling the person upwards.

[tex]F_{Pull}= F_{weight}*0.75=784N*0.75=588N[/tex]

To verify, we can use 1st Newton's law

∑F = 0

[tex]F_{Rope}-F_{Pull}+F_{Person}-F_{Scale}=0 \\588N-588N+196N-196N=0[/tex]

4. A 5.0 kg block moving to the right at 12.0 m/sec collides with a 4.0 kg block moving to the right at 2 m/sec. If the 4.0 kg moves to the right at 10 m/sec after the collision, what will be the speed of the 5.0 kg block? How much energy was lost during the collision?

Answers

Answer:

Energy lost = 55.28Joules

Explanation:

Using the law of momentum:

m1u1+m2u2 = m1v1+m2v2

m1 and m2 are the masses of the objects

u1 and u2 are the initial velocities.

v1 and v2 are final velocities

Given

m1 = 5kg

m2 = 4kg

u1 = 12m/s

u2 = 2m/s

v1 = 10m/s

v2 = ?

Substitute

5(12)+4(2)=4(10)+5v2

60+8 = 40+5v2

68-40 = 5v2

28 = 5v2

v2 = 28/5

v2 = 5.6m/sec

Hence the speed of the 5kg block is 5.6m/s

Energy lost = Kinetic energy after collision - kinetic energy before collision

KE after collision = 1/2m1v1²+1/2m2v2²

KE after collision = 1/2(5)10²+1/2(4)(5.6)²

= 250+62.72

= 312.72Joules

KE before collision = 1/2m1u1²+1/2m2u2²

KE before collision = 1/2(5)12²+1/2(4)(2)²

= 360+8

= 368Joules

Energy lost = 368-312.72

Energy lost = 55.28Joules

A Ferris wheel rotates at an angular velocity of 0.25 rad/s. Starting from rest, it reaches its operating speed with an average angular acceleration of 0.027 rad/s2. How long does it take the wheel to come up to operating speed?

Answers

Answer:

t = 9.25 s

Explanation:

Given that,

Initial angular velocity, [tex]\omega_o=0[/tex] (at rest)

Final angular velocity, [tex]\omega_o=0.25\ rad/s[/tex]

Angular acceleration, [tex]\alpha =0.027\ rad/s^2[/tex]

We need to find the time it take the wheel to come up to operating speed. We know that the angular acceleration in terms of angular speed is given by :

[tex]\alpha =\dfrac{\omega_f-\omega_o}{t}\\\\t=\dfrac{\omega_f-\omega_o}{\alpha }\\\\t=\dfrac{0.25-0}{0.027}\\\\t=9.25\ s[/tex]

So, it will reach up to the operating speed in 9.25 s.

will give brainliest pls help

Answers

Answer:

a and c

Explanation:


A race car accelerates from rest with a displacement of 25.0 m. If the
acceleration is 1.2 m/s2, what is the car's final velocity?

Answers

Answer:

Vf = Vi + at

t = Vf - Vi = 0.0m/s - 1.75 m/s

    --------- = ------------------------- = 8.8s

         a              -0.20 m/s(squared)

Explanation:

This is what I got I am pretty sure it's correct but correct me if I'm wrong : )

A 3.00-kg block starts from rest at the top of a 35.5° incline and slides 2.00 m down the incline in 1.45 s. (a) Find the acceleration of the block.

Answers

Answer:

0.344 m/s^2

Explanation:

The first step is to calculate V

V= distance /time

= 2/1.45

= 1.379 m/s

Therefore the acceleration of the block can be calculated as follows

a= V - U/2d

= 1.379 - 0/2×2

= 1.379/4

= 0.344 m/s^2

The microwave background radiation is observed at a wavelength of 1.9 millimeters. The red shift of these photons is observed to be raoughly 1100. What would be the emitted wavelength?

Answers

Answer:

1730nm

Explanation:

Observed wavelength λ= 1.9 millimeters

Red shift of photons = 1100

Emitted wavelength = λo

Red shift = λ - λo/ λo = 1100

= [(1.9x10^-3 - λo)/ λo] = 1100

= 1.9x10^-3 - λo = 1100 λo

= 1.9x10^-3 = 1100 λo + λo

= 1.9x10^-3 = 1101 λo

We divide through by 1101 to get the value of lambda

1.9x10^-3/1101 = λo

λo = 0.000001726

λo = 1726nm

This is approximately

λo = 1730nm

Thank you!

A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 4.40 rev/s; 60.0 revolutions later, its angular speed is 15.0 rev/s. Calculate (a) the angular acceleration (rev/s2), (b) the time required to complete the 60.0 revolutions, (c) the time required to reach the 4.40 rev/s angular speed, and (d) the number of revolutions from rest until the time the disk reaches the 4.40 rev/s angular speed.

Answers

Answer:

The answer is below

Explanation:

a) Using the formula:

[tex]\omega^2=\omega_o^2+2\alpha \theta\\\\\omega=final\ velocity=15\ rev/s,w_o=initial\ velocity=4.4\ rev/s, \\\theta=distance=60\ rev\\\\Substituting:\\\\15^2=4.4^2+2(60)\alpha\\\\2(60)\alpha=15^2-4.4^2\\\\2(60)\alpha=205.64\\\\\alpha=1.71\ rev/s^2[/tex]

b) The disk is initially at rest. Using the formula:

[tex]\theta=\omega_ot+\frac{1}{2}\alpha t^2 \\\\but\ \omega_o=0(rest), \theta=60\ rev,\alpha=1.71\ rev/s^2\\\\Subsituting:\\\\60=0+\frac{1}{2}(1.71) t^2\\\\t=8.4\ s[/tex]

c)

[tex]\omega=\omega_o+\alpha t \\\\but\ \omega_o=0(rest), \omega=4.4 \ rev/s\ rev,\alpha=1.71\ rev/s^2\\\\Subsituting:\\\\4.4=1.71t\\\\t=2.6\ s[/tex]

d)

[tex]\omega^2=\omega_o^2+2\alpha \theta\\\\\omega=final\ velocity=4.4\ rev/s,w_o=initial\ velocity=0\ rev/s, \\\alpha=1.71\ rev/s^2\\\\Substituting:\\\\4.4^2=0+2(1.71)\theta\\\\19.36=3.42\theta\\\\\theta=5.66\ rev[/tex]

ufl.edu A wire of length 27.7 cm carrying a current of 4.11 mA is to be formed into a circular coil and placed in a uniform magnetic field of magnitude 5.85 mT. The torque on the coil from the field is maximized. (a) What is the angle between and the coil's magnetic dipole moment? (b) What is the number of turns in the coil? (c) What is the magnitude of that maximum torque?

Answers

Answer:

A)90°

Explanation:

ufl.edu A wire of length 27.7 cm carrying a current of 4.11 mA is to be formed into a circular coil and placed in a uniform magnetic field of magnitude 5.85 mT. The torque on the coil from the field is maximized. (a) What is the angle between and the coil's magnetic dipole moment? (b) What is the number of turns in the coil? (c) What is the magnitude of that maximum torque?

(a) What is the angle between and the coil's magnetic dipole moment.

The angle between and the coil's magnetic dipole moment is 90°, because it is perpendicular to the field since there is maximum torgue.

(b) What is the number of turns in the coil?

Explain the differences between getting burned by fire and getting burned by dry ice?
Need it ASAP

Answers

Getting burned by fire is different than dried ice because Ice is cold and would give you a bruise .
Hope this helps!

Question 2: If a runner travels 50 m in 5 s, his acceleration is
1 point
250 m/s/s
50 m/s/s
10 m/s/s
2 m/s/s

Answers

the answer is 10 do a good jon

A roller coaster stops at the top of a hill. What force brings the roller coaster back down to the ground?

Answers

Answer:

Simple enough that it seems like a trick question: gravity.

State two function of the mass M placed on the metre rule

Answers

correct answer is mass media is correct answer OK

A dentist’s drill starts from rest. After 7.28 s of constant angular acceleration it turns at a rate of 16740 rev/min. Find the drill’s angular acceleration. Answer in units of rad/s 2 .

Answers

Answer:

[tex]\alpha =240.79\ rad/s^2[/tex]

Explanation:

Given that,

Initial angular velocity, [tex]\omega_i=0[/tex]

Final angular velocity, [tex]\omega_f=16740\ rev/min = 1753\ rad/s[/tex]

We need to find the angular acceleration of the drill. It is given by the formula as follows :

[tex]\alpha =\dfrac{\omega_f-\omega_i}{t}\\\\\alpha =\dfrac{1753-0}{7.28}\\\\\alpha =240.79\ rad/s^2[/tex]

So, the angular acceleration of the drill is [tex]240.79\ rad/s^2[/tex].

A 1500 kg car hits a haystack at 8m/s and comes to a stop after 0.6 seconds
A)what is the change in momentum of the car ?
B) what is the impulse that acts on the car ?
C) what is the average force that acts on the car during the collision?
D) what is the work done by the haystack in stopping the car ?

Answers

Answer:

Kindly check explanation

Explanation:

Change in momentum:

m(v - u)

M = mass = 1500kg

v = final velocity = 0 m/s

u = initial velocity = 8m/s

Momentum = 1500(8 - 0)

Momentum = 1500 * 8

Momentum = 12000 kgm/s

B.) impulse that acts on the car

Impulse = Force * time

Impulse = change in momentum with time

Impulse = m(v - u)

Hence, impulse = 12000Ns

C.) Average force action on the car during collision

Impulse = Force * time

12000 = force * 0.6

12000/ 0.6 = force

Force = 20000 N

D.) Workdone by haystack in stopping the car :

Workdone = Force * Distance

Distance = speed * time

Distance = 8 * 0.6

Distance = 4.8m

Hence,

Workdone = 20,000 * 4.8 = 96000 J

1. a. Describe the type of energy that is observed when a musician's finger plucks a guitar string. does it give your ear kenetic or potential energy .​

Answers

Answer:

kinetic

Explanation:

Answer:

kinetic energy.

Explanation:

A pair of equal-length vectors at right angles to each other have a resultant. If the angle between the vectors is less than 90°, their resultant is

Answers

Answer:

Larger in magnitude

Explanation:

As the vectors get closer reducing the 90 degree angle, based on the "parallelogram rule" for vector addition, the magnitude of the resultant vector gets larger than when they are forming a 90 degree angle.

A tired worker pushes a heavy (100-kg) crate that is resting on a thick pile carpet. The coefficients of static and kinetic friction are 0.6 and 0.4, respectively. The worker pushes with a horizontal force of 490 N. The frictional force exerted by the surface is

Answers

Answer:

The friction force exerted by the surface is 490 newtons.

Explanation:

From Physics, we remember that static friction force ([tex]f_{s}[/tex]), measured in newtons, for a particle on a horizontal surface is represented by the following inequation:

[tex]f_{s} \leq \mu_{s}\cdot m \cdot g[/tex] (Eq. 1)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, dimensionless.

[tex]m[/tex] - Mass of the crate, measured in kilograms.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

If [tex]f_{s} = \mu_{s}\cdot m \cdot g[/tex], then crate will experiment an imminent motion. The maximum static friction force is:  ([tex]\mu_{s} = 0.6[/tex], [tex]m = 100\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex])

[tex]f_{s} = (0.6)\cdot (100\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)[/tex]

[tex]f_{s} = 588.42\,N[/tex]

From Newton's Laws we get that current force of friction as reaction to the pulling force done by the worker on the crate is:

[tex]\Sigma F = F-f = 0[/tex]

[tex]f = F[/tex] (Eq. 2)

Where:

[tex]F[/tex] - Horizontal force done by the worker, measured in newtons.

[tex]f[/tex] - Static friction force, measured in newtons.

If [tex]F = 490\,N[/tex], then the static friction force exerted by the surface is:

[tex]f = 490\,N[/tex]

Given that [tex]f < f_{s}[/tex], the crate does not change its state of motion. The friction force exerted by the surface is 490 newtons.  

How much is the spring stretched, in meters, by an object with a mass of 0.49 kg that is hanging from the spring at rest

Answers

Answer:

1.6m

Explanation:

Using the spring equation, which is as follows:

F = Kx

Where; F = force applied on the spring (N)

K = spring constant (3kg/s²)

x = extension of spring (m)

However, Force applied by object = mass × acceleration (9.8m/s²)

F = 0.49kg × 9.8m/s²

F = 4.802N

Since, F = 4.802N

F = Kx

4.802 = 3 × x

4.802 = 3x

x = 4.802/3

x = 1.6006

x = 1.6m

The spring is stretched i.e. the extension of the spring, by 1.6m

A student throws a water bottle upward into the air. It takes 1.2 seconds for the bottle to reach it's
maximum height. How much time will it take for the water bottle to return to the student's hand
(from its maximum height)?

Answers

Answer:

1.2 seconds

Explanation:

Formula for total time of flight in projectile is; T = 2u/g

Now, for the time to reach maximum height, it is gotten from Newton's first equation of motion;

v = u + gt

t is time taken to reach maximum height.

But in this case, g will be negative since motion is against gravity. Final velocity will be 0 m/s at max height.

Thus;

0 = u - gt

u = gt

t = u/g

Putting t for u/g in the equation of total time of flight, we have;

T = 2t

We are given t = 1.2

Thus, T = 2 × 1.2 = 2.4

Since total time of flight is 2.4 s and time to get to maximum height is 1.2 s, then it means time to fall from maximum height back to the students hand is; 2.4 - 1.2 = 1.2 s

If the ball is released from rest at a height of 0.63 m above the bottom of the track on the no-slip side, what is its angular speed when it is on the frictionless side of the track

Answers

Answer:

When the ball is on the frictionless side of the track , the angular speed is 89.7 rad/s.

Explanation:

Consider the ball is a solid sphere of radius 3.8 cm and mass 0.14 kg .

Given ,  mass, m=0.14 kg

Ball is released from rest at a height of, h= 0.83 m

Solid sphere of radius, R = 3.8 cm

                                       =0.038 m

From the conservation of energy

                          ΔK  = ΔU  

                [tex]\frac{1}{2}mv^2 +\frac{1}{2} I\omega^2=mgh[/tex]

Here , [tex]I=\frac{2}{5} MR^2 , v= R \omega[/tex]

  [tex]\frac{1}{2}mv^2\frac{1}{2}(\frac{2}{5}MR^2)(\frac{v}{R^2} )=mgh[/tex]

  [tex]\frac{1}{2} [v^2+\frac{2}{5}v^2]= gh[/tex]

[tex]\frac{7}{10} v^2=gh[/tex]

[tex]0.7v^2=gh[/tex]

 v=[tex]\sqrt{[gh/(0.7)][/tex]

=[tex]\sqrt{ [(9.8 m/s^2)(0.83 m) / (0.7) ][/tex]

= 3.408 m/s

Hence, angular speed when it is on the frictionless side of the track,

[tex]\omega=\frac{v}{R}[/tex]

   = (3.408 m/s)/(0.038 m)

[tex]\omega[/tex]   =  89.7 rad/s

Hence , the angular speed is 89.7 rad/s

1.A large beach ball weighs 4.0 N. One person pushes it with a force of 7.0 N due South while another person pushes it 5.0 N due East. Find the acceleration on the beach ball.

2. What is the weight of a 70 kg astronaut on the earth, on the moon, (g=1.6 m/s2), on Venus (g = 18.7 m/s2) and in outer space traveling at a constant velocity

Answers

Answer:

1. force applied southward = -4 j

force applied eastward = 5 i

total force applied = 5i - 4j

magnitude of total force applied = √(5)²+(-4)²

magnitude of total force applied = √25 + 16 = √41

magnitude of total force applied = 6.4N

But the beach ball also weighs 4 N,

which means that a force of 4N is required to overcome the inertia of the ball

Net force applied on the ball = total force applied - force applied by inertia

Net force applied on the ball = 6.4 - 4

Net force applied on the ball = 2.4 N

Mass of the ball:

Mass of the ball = weight of the ball / gravitational constant

Mass of the ball = 4 / 9.8 = 0.4 kg

Acceleration of Ball:

from newton's second law of motion:

F = ma

replacing the variables

2.4 = 0.4 * a          (where a is the acceleration of the ball)

a = 2.4/0.4

a = 6 m/s²

2. Mass of astronaut = 70 kg

Weight of Earth:

Weight = Mass * acceleration due to gravity

Weight = 70 * 9.8

Weight = 686 N

Weight on Moon:

Weight = Mass * acceleration due to gravity

Weight = 70 * 1.6                             (we are given that g = 1.6 on moon)

Weight = 112 N

Weight on Venus:

Weight = Mass * acceleration due to gravity

Weight = 70 * 18.7                         (we are given that g = 18.7 on Venus)

Weight = 1309 N

The speed of a 4.0-N hockey puck, sliding across a level ice surface, decreases at the rate of 2 m/s 2. The coefficient of kinetic friction between the puck and ice is:

Answers

Answer:

μ = 0.2041

Explanation:

Given

[tex]a = -2m/s^2[/tex]

Required

Determine the coefficient of friction (μ)

The acceleration is negative because it is decreasing.

Solving further, we have that:

[tex]F_f =[/tex] μmg

Where

μ = Coefficient of kinetic friction

[tex]F_f = ma[/tex]

So, we have:

ma = μmg

Divide both sides by m

a = μg

Substitute values for a and g

2 = μ * 9.8

Solve for μ

μ = 2/9.8

μ = 0.2041

How much force (in N) is exerted on one side of an 35.3 cm by 50.0 cm sheet of paper by the atmosphere

Answers

Answer:

A force of 1.788 newtons is exerted on one side of the sheet of paper by the atmosphere.

Explanation:

From definition of pressure, we get that force exerted by the atmosphere ([tex]F[/tex]), measured in newtons, on one side of the sheet of paper is given by the expression:

[tex]F = P_{atm}\cdot w\cdot l[/tex] (Eq. 1)

Where:

[tex]P_{atm}[/tex] - Atmospheric pressure, measured in pascals.

[tex]w[/tex] - Width of the sheet of paper, measured in meters.

[tex]l[/tex] - Length of the sheet of paper, measured in meters.

If we know that [tex]P_{atm} = 101325\,Pa[/tex], [tex]w = 0.353\,m[/tex] and [tex]l = 0.05\,m[/tex], then the force exerted on one side of the sheet of paper is:

[tex]F = (101325\,Pa)\cdot (0.353\,m)\cdot (0.05\,m)[/tex]

[tex]F = 1.788\,N[/tex]

A force of 1.788 newtons is exerted on one side of the sheet of paper by the atmosphere.

9. A 50 kg halfback is in the process of making a turn on a football field.
The halfback makes 1/4 of a turn with a radius of 15 meters in 2.1 seconds
before being tackled. What is the net force acting on the halfback before
he is tackled?

Answers

Answer:

Net force = 419.5N

Explanation:

Given the following data;

Mass = 50kg

Radius = 15m

Time = 2.1 secs

Turns = 1/4 = 0.25

In order to find the net force, we would first of all solve for the speed and acceleration of the halfback.

To find speed;

Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.

Mathematically, speed is given by the equation;

[tex]Speed = \frac{distance}{time}[/tex]

But the distance traveled is given by the circumference of a circle = [tex] 2\pi r[/tex]

Since he covered 1/4th of a turn;

[tex] Distance = 0.25 * 2 \pi *r[/tex]

Substituting into the equation;

[tex] Speed, v = \frac {(0.25*2*3.142 * 15)}{2.1}[/tex]

[tex] Speed, v = \frac {23.565}{2.1}[/tex]

Speed, v = 11.22m/s

To find acceleration;

[tex] Acceleration, a = \frac {v^{2}}{r}[/tex]

Where, v = 11.22m/s and r = 15m

Substituting into the equation, we have;

[tex] Acceleration, a = \frac {11.22^{2}}{15}[/tex]

[tex] Acceleration, a = \frac {125.8884}{15}[/tex]

Acceleration, a = 8.39m/s²

To find the net force;

Force is given by the multiplication of mass and acceleration.

Mathematically, Force is;

[tex] F = ma[/tex]

Where;

F represents force.m represents the mass of an object.a represents acceleration.

Substituting into the equation, we have;

[tex] F = 50 * 8.39[/tex]

F = 419.5N

Therefore, the net force acting upon the halfback is 419.5 Newton.

differentiate between speed and velocity​

Answers

Explanation:

Speed - The rate at which something moves

Velocity - The speed of something in a specific direction

Velocity is kind of a specific type of speed.

Speed,is a scalar quantity, and is the rate at which an object covers a distance. Speed is independant of direction.
velocity is a vector quantity. it is direction-dependant, and is the rate at which the position changes.

When an unknown resistance RxRx is placed in a Wheatstone bridge, it is possible to balance the bridge by adjusting R3R3 to be 2500ΩΩ. What is RxRx if R2R1=0.625R2R1=0.625?

Answers

Answer:

Rₓ = 1562.5 Ω

Explanation:

The formula for the wheat stone bridge in balanced condition is given as follows:

R₁/R₂ = R₃/Rₓ

where,

Rₓ = Unknown Resistance = ?

R₃ = 2500 Ω

R₂/R₁ = 0.625

R₁/R₂ = 1/0.625 = 1.6

Therefore,

1.6 = 2500 Ω/Rₓ

Rₓ = 2500 Ω/1.6

Rₓ = 1562.5 Ω

Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.30 mm high. Assume it starts from rest and rolls without slipping.

Answers

Answer:

9.77 m/s

Explanation:

Since the cylinder is rolling, it will have both translational and rotational kinetic energy.

From conservation of energy, its initial mechanical energy equals its final mechanical energy.

So, K' + U' = K + U where K and U are the initial kinetic and potential energies respectively and K' and U' are the final kinetic and potential energies respectively.

So, Since the cylinder starts from rest, its initial kinetic energy K = 0, its initial potential energy = mgh where m = mass of cylinder, g = acceleration due to gravity = 9.8 m/s² and h = height of incline = 7.30 mm = 7.3 × 10⁻³ m . Its final kinetic energy K' = 1/2Iω² + 1/2mv² where I = moment of inertia of cylinder = 1/2mr² where r = radius of cylinder and v = translational velocity of cylinder. Its final potential energy U' = 0. Substituting these into the equation, we have  

K' + U' = K + U

1/2Iω² + 1/2mv² + 0 = 0 + mgh

1/2(1/2mr²)ω² + 1/2mv² = mgh

1/4mr²ω² + 1/2mv² = mgh          

1/4m(rω)² + 1/2mv² = mgh    v = rω

1/4mv² + 1/2mv² = mgh

3/4mv² = mgh

v² = 4gh/3

v = √(4gh/3)

v = √(4 × 9.8 m/s² × 7.3 × 10⁻³ m/3)

v = (√286.16/3) m/s

v = (√95.39) m/s

v = 9.77 m/s

Help pleaseeeee!
If a force of 12 N is applied to a 4.0 kg object, what acceleration is produced?

Answers

Answer:

The answer is 3 m/s²

Explanation:

The acceleration of an object given it's mass and the force acting on it can be found by using the formula

[tex]a = \frac{f}{m} \\ [/tex]

where

f is the force

m is the mass

From the question we have

[tex]a = \frac{12}{4} \\ [/tex]

We have the final answer as

3 m/s²

Hope this helps you

Other Questions
1) Paco y Anita son ____.A. ambiciososB. ambiciosas 2) Las profesoras son muy __.A. simpticas B. simpticos 3) Los alumnos son ____.A. buenos B. buenas 4) Los alumnos son ___.A. inteligenteB. Inteligentes A team of scientists think they discovered a new organism while exploring Brazil. Upon bringing the specimen back to their lab in Atlanta, they observe the specimen for several weeks. They take a sample from the specimen to observe it under a microscope and see the sample is composed of many small compartments containing what appears to be nuclei. They shine a bright light to the left of the specimen and observe it slowly turn itself towards the light over multiple days. What further evidence would support that the newly discovered specimen is alive? Divide(2x + 4x2 - 5) by (x + 3). You are in the time signature 4/4. There is a double dotted half note in a measure. How many beats does that double dotted half note receive? A 25.0-g object moving to the right at 20.0 cm/s overtakes and collides elastically with a 10.0-g object moving in the same direction at 15.0 cm/s. Find the velocity of each object after the collision. What is an object? a. An element on a Web page that contains data and procedures for how that item will react when activated b. An element on a Web page that expedites the downloading of Web pages c. An element on a Web page that condenses the amount of space the page uses in a computer's cache d. An element on a Web page that interacts with all programming languages and enables them to function universally with all browsers Which sentence in this autobiography excerpt uses descriptive imagery?I was overseas with the army for the first time. I had never been this farfrom home before, and I missed my family. I wondered how lonely Iwould be. A cold wind blew suddenly, sending a shiver across my skin.O A. A cold wind blew suddenly, sending a shiver across my skin.O B. I was overseas with the army for the first time.O C. I had never been this far from home before, and I missed myfamily.OD. I wondered how lonely I would be.30 POINTShelp fast Which of the following has NOT increased the power of the executive branch over time? A) A national Crisis B) The 22nd amendment C) Bureaucratic rule making (I chose this one, and it was wrong) D) Modern broadcast media technology Why does pencil feel cold in some places? Because Chelsea doesn't get enough sleep at night, she finds that she has trouble concentrating at work or thinking clearly. what body system is Chelsea's lack of sleep affecting? Newton's law of restitution Trying to find the equivalent ratio with lower termsA. 30:36=20: ?B. 21:35=? :20 A survey of 1012 teens found that 25% of students aged 14 to 18 plan to borrow nomoney to pay for college. What's the margin of error for a 95% confidence interval forthe proportion of all students aged 14 to 18 who plan to borrow no money to pay forcollege? Which in NOT a type of muscle? a Smooth b Flat c Cardiac d Skeletal Do y'all know the answer?? An albatross is a large bird that can fly 400 kilometers in 8 hours at a constant speed. Using d for distance in kilometers and t for number of hours, an equation that represents this situation is d = 50t . 1. What are two constants of proportionality for the relationship between distance in kilometers and number of hours? What is the relationship between these two values?2. Write another equation that relates d and t in this context. 28 Points and Brainliest AND I WILL REPORT YOU IF YOU DON'T JUST ANSWER ONE PART OF THEY QUESTION AND JUST TRYING TO GET POINTS The young wife first saw Peck because she (See paragraph 24)a) was drinking too much.b) had cut her wrist.c) had tried to return to United Statesd) wanted to learn to drive. Need help =( have no idea how to start. How does geography influence genetics