complete Question
A motor driving a 1000-W water pump has a power factor of 0.80 lagging; a second motor driving a 600-W water pump has a power factor of 0.60 lagging assuming the motors are working under 120-Vrms, 60-HZAC. When both motors working together what is the combined power factor? If a 200-μF capacitor is connected to the above system (two motors) what is the new combined power factor?
Answer:
[tex]p.f'=0.960[/tex]
Explanation:
First motor Power [tex]P=1000W[/tex]
First motor Power factor [tex]P.f=0.80[/tex]
Second motor Power [tex]P=600W[/tex]
Second motor Power factor p.f=0.60
Voltage [tex]V=120Vrms[/tex]
Frequency [tex]F=60Hz[/tex]
Capacitor [tex]C=200\mu F[/tex]
Generally power in Var is given as
For First Motor
[tex]Q=\frac{1000}{0.8}\sqrt{1-0.8^2}[/tex]
[tex]Q=750Var[/tex]
For Second Motor
[tex]Q=\frac{600}{0.6}\sqrt{1-0.6^2}[/tex]
[tex]Q=800Var[/tex]
Generally the equation for The Reactive Power is mathematically given by
[tex]Q_c=\frac{V^2}{X_c}[/tex]
Where
[tex]X_c=\frac{1}{2 \pi fc}[/tex]
[tex]X_c=\frac{1}{2 \pi 60*200*10^{-6} }[/tex]
[tex]X_c=13.3[/tex]
Therefore
[tex]Q_c=-\frac{120^2}{13.3}\\\\Q_c=-1085.97j[/tex]
Giving
Total Power Drawn by Supply
[tex]P_t=(1000+j750)+(600+800)-j1085.97[/tex]
[tex]P_t=1600+464.03j[/tex]
Therefore
[tex]p.f'=\frac{1600}{\sqrt{1600^2+464.03^2}}[/tex]
[tex]p.f'=0.960[/tex]
The base of an aluminum block, which is fixed in place, measures 90 cm by 90 cm, and the height of the block is 60 cm. A force, applied to the upper face and parallel to it, produces a shear strain of 0.0060. The shear modulus of aluminum is . What is the displacement of the upper face in the direction of the applied force
The question is incomplete. The complete question is :
The base of an aluminum block, which is fixed in place, measures 90 cm by 90 cm, and the height of the block is 60 cm. A force, applied to the upper face and parallel to it, produces a shear strain of 0.0060. The shear modulus of aluminum is [tex]3.0 \times 10^{10} \ Pa[/tex] . What is the displacement of the upper face in the direction of the applied force?
Solution :
The relation between shear modulus, shear stress and strain,
[tex]$\text{Shear modulus, S =} \frac{\text{Shear stress}}{\text{shear strain}}$[/tex]
Shear stress = shear modulus (S) x shear strain
[tex]$=3 \times 10^{10} \times 0.0060$[/tex]
[tex]$=1.80 \times 10^8$[/tex] Pa
[tex]$=180 \times 10^6$[/tex] Pa
[tex]$=180 \ MPa$[/tex]
The length represents the distance between the fixed in place portion and where the force is being applied.
Therefore,
[tex]$\text{Displacement} = \text{shear strain} \times \text{length}$[/tex]
= 0.006 x 60 cm
= 0.360 cm
= 3.6 mm
Thus, the displacement of the upper face is 3.6 mm in the direction of the applied force.
You have been assigned the task of reviewing the relief scenarios for a specific chemical reactor in your plant. You are currently reviewing the scenario involving the failure of a nitrogen regulator that provides inert padding to the vapor space of the reactor. Your calculations show that the maximum discharge rate of nitrogen through the existing relief system of the vessel is 0.5 kgls, However, your calculations also show that the flow of nitrogen through the l-in supply pipe will be much greater than this. Thus under the current configuration a failure of the nitrogen regulator will result in an over pressuring of the reactor. One way to solve the problem is to install an orifice plate in the nitrogen line, thus limiting the flow to the maximum of 0.5 kg/s. Determine the orifice diameter (in cm) required to achieve this flow. Assume a nitrogen source supply pressure of 15 bar absolute. The ambient temperature is 25°C and the ambient pressure is 1 atm. 3.
Answer:
[tex]D=0.016m[/tex]
Explanation:
From the question we are told that:
Discharge Rate [tex]F_r=0.5kgls[/tex]
Pressure [tex]P=15Kpa[/tex]
Temperature [tex]T=25=>298K[/tex]
Ambient pressure is 1 atm.
Generally the equation for Density is mathematically given by
[tex]\rho=\frac{PM}{RT}[/tex]
[tex]\rho=\frac{15*10^5*28.0134*10^{-3}}{8.314*298}[/tex]
[tex]\rho=16.958kg/m^2[/tex]
Generally the equation for Flow rate is mathematically given by
[tex]F_r=\mu A\sqrt{Q \rho P(\frac{2}{Q+1})^{\frac{Q+1}{Q-1}}}[/tex]
Where
[tex]Q=Heat coefficient\ ratio\ of\ Nitrogen[/tex]
[tex]Q=1.4[/tex]
[tex]\mu= Discharge\ coefficient[/tex]
[tex]\mu=0.68[/tex]
Therefore
[tex]0.5=0.68 A\sqrt{1.4 16.958 15*10^{5}(\frac{2}{1.4+1})^{\frac{1.4+1}{1.4-1}}}[/tex]
[tex]A=2.129*10^{-4}[/tex]
Where
[tex]A=\frac{\pi}{4}D^2[/tex]
[tex]\frac{\pi}{4}D^2=2.129*10^{-4}[/tex]
[tex]D=0.016m[/tex]
What are three types of land reform
Answer:
Abolition of intermediaries (rent collectors under the pre-Independence land revenue system); Tenancy regulation (to improve the contractual terms including the security of tenure); A ceiling on landholdings (to redistributing surplus land to the landless);
Types of Land Reform
Abolition of Intermediaries
The first step taken by the Indian government under land reforms post-independence was passing the Zamindari Abolition Act. The primary reason of a backward agrarian economy was the presence of intermediate entities like, jagirdars and zamindar who primarily focussed on collecting sky-rocketing rents catering to their personal benefits, without paying attention to the disposition of farms and farmers. Abolition of such intermediaries not only improved conditions of farmers by establishing their direct connection with the government but also improved agricultural production.
Regulation of Rents
This was in direct response to the unimaginably high rents which were charged by intermediaries during British rule, which resulted in a never-ending cycle of poverty and misery for tenants. Indian government implemented these regulations to protect farmers and labourers from exploitation by placing a maximum limit on the rent that could be charged for land.
Tenure Security
Legislations were passed in all states of the country to grant tenants with permanent ownership of lands and protection from unlawful evictions on expiry of the lease. This law protects tenants from having to vacate a property immediately after their tenure is over unless ordered by law. Even in that case, ownership can be regained by tenants with the excuse of personal cultivation.
what is tracer lathe machine
Answer: The tracer lathe is a roughing operation for the output shaft on rear wheel drive transmissions.
Explanation:
answer this qustion plz
Answer:
click here and I'm so happy I have been doing this weekend I can see the same way you could come back in a bit and then we are all of you to know you do for a bit of time with me or
Which statement describes the relay between minerals and rocks ?
Answer:
•○●□■hey hi!■□●○•Explanation:
Minerals and rocks are the same. Aggregates of minerals form rocks. Minerals determine the texture of a rock. Most rocks are made of a single mineral type.
☆♡hope this helps♡☆Hãy trình bày các bộ phận chính trong một bộ điều khiển điện tử (ECU) dùng trên ô tô. Cho biết công dụng của từng thành phần.
Answer:
sorry but I can't understand this Language.
Explanation:
unable to answer sorry
If the constant is added to every observation of data then arithmatic mean obtained is
Answer:
Explanation:
Increased by the constant. Take a very simple case.
4 + 5 + 6 = 15
The mean is 5 (obtained by dividing the total (15) by the number of terms (3).
Now add a constant say 6
4 + 6 = 10
5 + 6 = 11
6 + 6 = 12
Total = 33/3 = 11
So the mean 5 is increased by the constant 6.
Now do the same thing more symbolically.
4 + c
5 + c
6 + c
Total = 15 + 3c
Divide by 3 you get 5 + c
If you want a more formal proof involving n terms, leave a note.
Race cars at the Indianapolis Speedway average speeds of 185 mi/h. After determining the altitude of Indianapolis, find the Mach number of these cars and estimate whether compressibility might affect their aerodynamics.
Answer:
- the Mach number is 0.24.
- Compressibility becomes effective when Mach number is greater than 0.3, the Mach number of the race cars is less than 0.3, hence, compressibility will not affect their aerodynamics.
Explanation:
Given the data in the question;
Average speed V = 185 miles per hour = ( 185 /2.237 ) m/s = 82.7 m/s
From Almanac, we can find that Indianapolis is at 220 m altitude.
So from table, at that altitude, the standard speed of sound will be 339.4 m/s .
Mach number of the race car will be;
Mach Number = Velocity / sound speed
we substitute
Mach Number = ( 82.7 m/s ) / ( 339.4 m/s )
Mach Number = 0.24
Therefore the Mach number is 0.24.
We know that, compressibility becomes effective when the Mach number is greater than 0.3.
Since the Mach number of the race cars is less than 0.3, compressibility will not affect their aerodynamics.
A power cycle receives QH by heat transfer from a hot reservoir at TH = 1200 K and rejects energy QC by heat transfer to a cold reservoir at TC = 400 K. For each of the following cases, determine whether the cycle operates reversibly, operates irreversibly, or is impossible.
a.QH = 900 kJ, Wcycle= 450 kJ
b. QH = 900 kJ, Qc = 300 kJ
c. Weycle = 600 kJ, Qc= 400 kJ
d. η = 75%
Answer:
a) Irreversible, b) Reversible, c) Irreversible, d) Impossible.
Explanation:
Maximum theoretical efficiency for a power cycle ([tex]\eta_{r}[/tex]), no unit, is modelled after the Carnot Cycle, which represents a reversible thermodynamic process:
[tex]\eta_{r} = \left(1-\frac{T_{C}}{T_{H}} \right)\times 100\,\%[/tex] (1)
Where:
[tex]T_{C}[/tex] - Temperature of the cold reservoir, in Kelvin.
[tex]T_{H}[/tex] - Temperature of the hot reservoir, in Kelvin.
The maximum theoretical efficiency associated with this power cycle is: ([tex]T_{C} = 400\,K[/tex], [tex]T_{H} = 1200\,K[/tex])
[tex]\eta_{r} = \left(1-\frac{400\,K}{1200\,K} \right)\times 100\,\%[/tex]
[tex]\eta_{r} = 66.667\,\%[/tex]
In exchange, real efficiency for a power cycle ([tex]\eta[/tex]), no unit, is defined by this expression:
[tex]\eta = \left(1-\frac{Q_{C}}{Q_{H}}\right) \times 100\,\% = \left(\frac{W_{C}}{Q_{H}} \right)\times 100\,\% = \left(\frac{W_{C}}{Q_{C} + W_{C}} \right)\times 100\,\%[/tex] (2)
Where:
[tex]Q_{C}[/tex] - Heat released to cold reservoir, in kilojoules.
[tex]Q_{H}[/tex] - Heat gained from hot reservoir, in kilojoules.
[tex]W_{C}[/tex] - Power generated within power cycle, in kilojoules.
A power cycle operates irreversibly for [tex]\eta < \eta_{r}[/tex], reversibily for [tex]\eta = \eta_{r}[/tex] and it is impossible for [tex]\eta > \eta_{r}[/tex].
Now we proceed to solve for each case:
a) [tex]Q_{H} = 900\,kJ[/tex], [tex]W_{C} = 450\,kJ[/tex]
[tex]\eta = \left(\frac{450\,kJ}{900\,kJ} \right)\times 100\,\%[/tex]
[tex]\eta = 50\,\%[/tex]
Since [tex]\eta < \eta_{r}[/tex], the power cycle operates irreversibly.
b) [tex]Q_{H} = 900\,kJ[/tex], [tex]Q_{C} = 300\,kJ[/tex]
[tex]\eta = \left(1-\frac{300\,kJ}{900\,kJ} \right)\times 100\,\%[/tex]
[tex]\eta = 66.667\,\%[/tex]
Since [tex]\eta = \eta_{r}[/tex], the power cycle operates reversibly.
c) [tex]W_{C} = 600\,kJ[/tex], [tex]Q_{C} = 400\,kJ[/tex]
[tex]\eta = \left(\frac{600\,kJ}{600\,kJ + 400\,kJ} \right)\times 100\,\%[/tex]
[tex]\eta = 60\,\%[/tex]
Since [tex]\eta < \eta_{r}[/tex], the power cycle operates irreversibly.
d) Since [tex]\eta > \eta_{r}[/tex], the power cycle is impossible.
A 40-mm-diameter solid steel shaft, used as a torque transmitter, is replaced with a hollow shaft having a 40-mm outer diameter and a 36-mm inner diameter. If both materials have the same strength, what is the percentage reduction in torque transmission
Answer:
65.61%
Explanation:
we have the following information to answer this question
diameter of the solid steel shaft = 40 mm
outer diametr of the hollow shaft = 40mm
inner diametr pf the hollow shaft = 36mm
[tex]percentage reduction in torque transmission = \frac{Tsolid-Thollow}{Tsolid} *100[/tex]
= (40³ - (40⁴-36⁴)/40)/40³ * 100
= (40³ - 22009.6)/40³ * 100
= 41990.4/64000 * 100
= 0.6561 x 100
= 65.61%
percentage reduction in torque transmission = 65.61%
Troy must keep track of the amount of refrigerant he uses from a 50-pound cylinder to ensure that accurate
records are kept. He used 13 pounds on a systein for Ms. Jones and 9 pounds on a system for a commercial
client. How many pounds should he have left in the cylinder?
tof
Troy should have
pounds of refrigerant left in the cylinder.
baon naid Thamar basic
محمود احمد مجد
12
اهداء ما در
Answer:
Amount of gas still in cylinder = 28 pound
Explanation:
Given:
Amount of gas in cylinder = 50 pound
Amount of gas used in Ms. Jones system = 13 pound
Amount of gas used in client system = 9 pound
Find:
Amount of gas still in cylinder
Computation:
Amount of gas still in cylinder = Amount of gas in cylinder - Amount of gas used in Ms. Jones system - Amount of gas used in client system
Amount of gas still in cylinder = 50 - 13 - 9
Amount of gas still in cylinder = 28 pound
what is an OTG USB? how is it useful
Answer:
An OTG or On The Go adapter (sometimes called an OTG cable, or OTG connector) allows you to connect a full sized USB flash drive or USB A cable to your phone or tablet through the Micro USB or USB-C charging port
Explanation:
pls mark brainliest
What is protection scheme?
Answer:
The objective of a protection scheme is to keep the power system stable by isolating only the components that are under fault, whilst leaving as much of the network as possible still in operation.
Explanation:
The devices that are used to protect the power systems from faults are called protection devices.
The impeller shaft of a fluid agitator transmits 20 kW at 430 rpm. If the allowable shear stress in the impeller shaft must be limited to 65 MPa, determine (a) the minimum diameter required for a solid impeller shaft. (b) the maximum inside diameter permitted for a hollow impeller shaft if the outside diameter is 36 mm. (c) the percent savings in weight realized if the hollow shaft is used instead of the solid shaft. (Hint: The weight of a shaft is proportional to its cross-sectional area.)
Given :
Power, P = 20 kW
Speed, N = 430 rpm
Allowable shear stress, τ = 65 MPa
Torque in the shaft is given by :
[tex]$P=\frac{2 \pi NT}{60}$[/tex]
[tex]$T=\frac{60 \times 20 \times 10^3}{2 \pi \times 430}$[/tex]
T = 444.37 N.m
Diameter of the solid shaft is
[tex]$d=\sqrt[3]{\frac{16 T}{\pi \tau}}[/tex]
[tex]$d=\sqrt[3]{\frac{16 \times 444.37}{3.14 \times 65}}[/tex]
[tex]$d=\sqrt[3]{34.83} $[/tex]
d = 3.265 m
d = 326.5 mm
Internal diameter of the hollow shaft is :
[tex]$\frac{T}{\frac{\pi}{32} \left( d_0^4 - d_i^4 \right)}=\frac{\tau}{d_0/2}$[/tex]
[tex]$\frac{444.37}{\frac{3.14}{32} \left( 0.036^4 - d_i^4 \right)}=\frac{65 \times 10^6}{0.036/2}$[/tex]
[tex]$\frac{444.37}{0.09 \left( 1.6 \times 10^{-6} - d_i^4 \right)}=\frac{65 \times 10^6}{0.018}$[/tex]
[tex]$\frac{7.99}{ \left( 1.6 \times 10^{-6} - d_i^4 \right)}=5850000$[/tex]
[tex]$1.3\times 10^{-6} = 1.6 \times 10^{-6} - d_i^4 \right)}$[/tex]
[tex]$d_i^4=300000$[/tex]
[tex]$d_i = 23.40$[/tex] mm
Percentage savings in the weight is given by :
Percentage saving = [tex]$\frac{W_{solid}-W_{hollow}}{W_{solid}}\times100$[/tex]
[tex]$=\frac{V_{solid}-V_{hollow}}{V_{solid}}\times100$[/tex]
[tex]$=\frac{d^2 - (d_0^2 - d_i^2)}{d^2} \times 100$[/tex]
[tex]$=\frac{(326.5)^2 - (0.036^2 - (32.40)^2)}{(326.5)^2} \times 100$[/tex]
[tex]$=\frac{106602 - \left(1.29 \times 10^{-3} - 1049.76 \right)}{106602} \times 100$[/tex]
[tex]$=\frac{106602 - 1049 }{106602} \times 100$[/tex]
[tex]$=\frac{105553 }{106602} \times 100$[/tex]
= 99.01 %
định khoản nghiệp vụ sau : tạm ứng cho nhân viên A đi công tác bằng tiền mặt 50.000
Answer:
report on a fight you have witnessed
Urgent!!!
List the assumptions that can be taken into account in torsion analysis.
Answer:
Explanation:
In the development of a torsion formula for a circular shaft, the following assumptions are made: Material of the shaft is homogeneous throughout the length of the shaft. Shaft is straight and of uniform circular cross section over its length. Torsion is constant along the length of the shaft.
While reflecting on the solutions and the process of concept generation, the development team takes a look at some critical questions such as:________.
1. Is the team developing confidence that the solution space has been fully explored?
2. Are there alternative diagrams and alternative ways to decompose the problem?
3. Have external sources been thoroughly pursued, and everyone’s ideas been accepted and integrated in the process?
4. All of the above
Answer:
While reflecting on the solutions and the process of concept generation, the development team takes a look at some critical questions such as:________.
4. All of the above
Explanation:
The team must explore its solution space, including some external sources. Then, it must integrate its findings with the ideas of team members, ensuring the consideration of all possible ways to decompose the problem. This is because employing a structured process to concept generation enables the team to come up with creative solutions to design concepts.
17- The cathodic polarization is ..... *
O
a- activation.
O
b- concentration
O c- both.
hỗ trợ mình với được không các bạn
Answer:
Explanation:
Be bop
Theo Anh / Chị, để đáp ứng yêu cầu phát triển nền kinh tế thị trường định hướng Xã hội Chủ nghĩa ở Việt Nam trong bối cảnh thời đại hiện nay, cần chú trọng giải quyết những vấn đề gì ?
8.50 nC of charge is uniformly distributed along a thin rod of length L = 9.20 cm, which is then bent into a semicircle. What is the magnitude of the electric field at the center of the circle
Tech A says that the voltage regulator controls the strength of the rotor s magnetic field. Tech B says that the voltage regulator is installed between the output terminal of the alternator and the positive terminal of the battery. Who is correct?
Answer:
Voltage Regulator
Technician A is correct.
Explanation:
Technician B is not correct. The voltage regulator is not installed between the output terminal of the alternator and the positive terminal of the battery as claimed by Technician B. Technician A's opinion that the voltage regulator controls the strength of the rotor's magnetic field is correct. The computer can also be used to control the output of the alternator by controlling the field current.
Plexiglas, polymethylmethacrylate (PMMA), is often used as display windows and cases in art galleries and museums. If its flame imparts 32 kW/m^2 to the surface when it burns estimate the energy release rate of a 3 m^2 square sheet (one side). Assume its vaporization temperature is 350°C. Calculate with units, provide work.
This question is incomplete, the complete question is;
Plexiglas, polymethylmethacrylate (PMMA), is often used as display windows and cases in art galleries and museums. If its flame imparts 32 kW/m^2 to the surface when it burns estimate the energy release rate of a 3 m^2 square sheet (one side). Assume its vaporization temperature is 350°C. Calculate with units, provide work.
a ⇒ [tex]q_{rad[/tex] = σT⁴, where σ = 5.67 × 10⁻¹¹ kW/m².K⁴
b ⇒ [tex]q"[/tex] = [tex]q_{flame[/tex] - [tex]q_{rad[/tex]
c ⇒ [tex]m"[/tex] = [tex]q"[/tex]/L, where L = 1.6 kJ/g
d ⇒ Q = [tex]m"[/tex] × A × ΔHc, where ΔHc is 24.9 kJ/g
Answer:
a) [tex]q_{rad[/tex] = 8.54 kW/m²
b) [tex]q"[/tex] = 23.46 kW/m²
c) [tex]m"[/tex] = 14.6625 g/m²
d) Q = 1095.2888 kJ
Explanation:
Given the data in the question;
[tex]q_{flame[/tex] = 32 kW/m²
Area; A = 3m²
vaporization temperature; T = 350°C = ( 350 + 273 )K = 623 K
Now,
a) ⇒ [tex]q_{rad[/tex] = σT⁴, where σ = 5.67 × 10¹¹ kW/m².K⁴
we substitute
[tex]q_{rad[/tex] = ( 5.67 × 10⁻¹¹ kW/m².K⁴ ) × ( 623 K)⁴
[tex]q_{rad[/tex] = ( 5.67 × 10⁻¹¹ kW/m².K⁴ ) × 150644120641 K⁴
[tex]q_{rad[/tex] = 8.54 kW/m²
b) ⇒ [tex]q"[/tex] = [tex]q_{flame[/tex] - [tex]q_{rad[/tex]
we substitute
[tex]q"[/tex] = 32 kW/m² - 8.54 kW/m²
[tex]q"[/tex] = 23.46 kW/m²
c) ⇒ [tex]m"[/tex] = [tex]q"[/tex]/L, where L = 1.6 kJ/g
we substitute
[tex]m"[/tex] = 23.46 / 1.6
[tex]m"[/tex] = 14.6625 g/m²
d) ⇒ Q = [tex]m"[/tex] × A × ΔHc, where ΔHc is 24.9 kJ/g
we substitute
Q = 14.6625 × 3 × 24.9
Q = 1095.2888 kJ
______ is not a type of digital signaling technique
Answer:
Data Rate Signaling
Increasing following distance to
when encountering other motorists who follow too closely
is an example of appropriate implementation of the IPDE defensive driving strategy for the
maintenance of an appropriate Safety Cushion.
Two-seconds
Enree-seconds
Four-seconds
Twenty-seconds
Answer:
Increasing following distance to Four-seconds when encountering other motorists who follow too closely is an example of appropriate implementation of the IPDE defensive driving strategy for the maintenance of an appropriate Safety Cushion.
Explanation:
Maintaining the required safety cushion by utilizing the IPDE defensive driving strategy to manage the nine to fifteen space driving zones involves continuous scanning. Therefore, motorists should be able to identify objects and hazards in the driving scene, line of sight, and path of travel. They should predict points of driving conflicts. They should determine appropriate and safe driving actions to take, when, and where. Finally, action is required to ensure that conflicts are avoided.
Suppose that you have a block of copper which is 300 g. Relevant material parameters follow.
Material atomic weight Density
Copper 63.5 g/mol 8.96 g/cm^3
Using equipartition, compute the molar heat capacity in J/mol K.
Answer:
[tex]C_v= 24.942[/tex] J / mol K
Explanation:
Molar Heat Capacity
using the equipartition, the equation :
[tex]$C_v=\frac{d}{2} R$[/tex]
Here, [tex]C_v[/tex] = molar heat capacity
d = degree of freedom
R = Universal gas constant
Degree of freedom, d is 6
Universal gas constant, R = 8.317 J/ mol K
Therefore, the molar heat capacity is :
[tex]$C_v=\frac{d}{2} R$[/tex]
[tex]$C_v=\frac{6}{2} \times 8.314$[/tex]
[tex]C_v= 24.942[/tex] J / mol K
The number-average molecular weight of a poly (styrene-butadiene) alternating copolymer is 1,350,000 g/mol. What is the average number of styrene and butadiene repeat units per molecule.
a) 6,806
b) 6,944
c) 4,801
d) 8,544
Write the code using the do-while loop to force the user to enter a number in the range [20,50]
Answer:
Mark as brainlist pls hello
deep invasion lead to???
Answer:
2
Explanation:
usjshshshjeoeieieiiekeiekeiekekekekekkske
Answer:
2
Explanation:
High separation between deep...........