find the rate of energy radiated by a man by assuming the surface area of his body 1.7m²and emissivity of his body 0.4​

Answers

Answer 1

The rate of energy radiated by the man is 3.86 x [tex]10^{-8}[/tex]  J/s. [tex]m^{2}[/tex].

The amount of energy radiated by an object majorly depends on the area of its surface and its temperature. The is well explained in the Stefan-Boltzmann's law which states that:

Q(t) = Aeσ[tex]T^{4}[/tex]

where: Q is the quantity of heat radiated, A is the surface area of the object, e is the emmisivity of the object, σ is the Stefan-Boltzmann constant and T is the temperature of the object.

To determine the rate of energy radiated by the man in the given question;

[tex]\frac{Q(t)}{T^{4} }[/tex] = Aeσ

But A = 1.7 m², e = 0.4 and σ = 5.67 x [tex]10^{-8}[/tex] J/s.

So that;

[tex]\frac{Q(t)}{T^{4} }[/tex] = 1.7 * 0.4 * 5.67 x [tex]10^{-8}[/tex]

     = 3.8556 x [tex]10^{-8}[/tex]

     = 3.86 x [tex]10^{-8}[/tex]  J/s. [tex]m^{2}[/tex]

Thus, the rate of energy radiated by the man is 3.86 x [tex]10^{-8}[/tex]  J/s. [tex]m^{2}[/tex].

Learn more on energy radiation of objects by visiting: https://brainly.com/question/12550129


Related Questions

Rachel has good distant vision but has a touch of presbyopia. Her near point is 0.60 m. Part A When she wears 2.0 D reading glasses, what is her near point

Answers

Answer:

The right answer is "0.273 m".

Explanation:

Given:

Power (P),

[tex]\frac{1}{f} = 2D[/tex]

Near point,

u = 0.6 m

As we know,

⇒ [tex]\frac{1}{v} -\frac{1}{u}=\frac{1}{f} = 2[/tex]

By substituting the values, we get

⇒ [tex]\frac{1}{v} -\frac{1}{0.6} =2[/tex]

            [tex]\frac{1}{v}=2+\frac{1}{0.6}[/tex]

            [tex]\frac{1}{v} =\frac{1.2+1}{0.6}[/tex]

            [tex]\frac{1}{v}=\frac{2.2}{0.6}[/tex]    

By applying cross-multiplication, we get

          [tex]0.6=2.2 \ v[/tex]

            [tex]v = \frac{0.6}{2.2}[/tex]

      [tex]S_{near} = 0.273 \ m[/tex]

Cho lực F ⃗=6x^3 i ⃗-4yj ⃗ tác dụng lên vật làm vật chuyển động từ A(-2,5) đến B(4,7). Vậy công của lực là:

Answers

The work done by [tex]\vec F[/tex] along the given path C from A to B is given by the line integral,

[tex]\displaystyle \int_C \mathbf F\cdot\mathrm d\mathbf r[/tex]

I assume the path itself is a line segment, which can be parameterized by

[tex]\vec r(t) = (1-t)(-2\,\vec\imath + 5\,\vec\jmath) + t(4\,\vec\imath+7\,\vec\jmath) \\\\ \vec r(t) = (6t-2)\,\vec\imath+(2t+5)\,\vec\jmath \\\\ \vec r(t) = x(t)\,\vec\imath + y(t)\,\vec\jmath[/tex]

with 0 ≤ t ≤ 1. Then the work performed by F along C is

[tex]\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}[/tex]

A student wants to start a small business in school. Write down six items that
he/she can sell in school at a profit.

Answers

Answer:

packets of pen

packets of pencil

copies

books

bottles

mask

Six items that a student can sell in school at a profit:

- Homemade baked goods

- School supplies

-Drinks

- Healthy snacks

- Personalized accessories

- Stickers

What is a profit?

Profit is the difference between the revenue earned by a business or individual and the costs incurred to produce the goods or services sold.

It is an important measure of financial success for companies and is often used to determine the value of a business.

We have,

Here are six items that a student can sell in school at a profit:

Homemade baked goods - cupcakes, cookies, brownies, and other treats can be sold individually or as a pack.

School supplies - items such as pens, pencils, erasers, rulers, notebooks, and binders are always in demand.

Drinks - bottled water, juices, and sodas are popular beverages that students may purchase during the school day.

Healthy snacks - fresh fruit, granola bars, and trail mix are nutritious snacks that many students are interested in buying.

Personalized accessories - items like keychains, bracelets, and bookmarks with unique designs or student names can be popular among peers.

Stickers - fun and colorful stickers can be sold individually or in packs and are often a favorite of younger students.

Thus,

Six items that a student can sell in school at a profit:

- Homemade baked goods

- School supplies

-Drinks

- Healthy snacks

- Personalized accessories

- Stickers

Learn more about profit here:

https://brainly.com/question/15699405

#SPJ3

a vector starts at the point (0.0) and ends at (2,-7) what is the magnitude of the displacement

Answers

Answer:

|x| = √53

Explanation:

We are told that the vector starts at the point (0.0) and ends at (2,-7) .

Thus, magnitude of displacement is;

|x| = √(((-7) - 0)² + (2 - 0)²)

|x| = √(49 + 4)

|x| = √53

A student of mass 50kg takes 15seconds to run up a flight of 50 steps. If each step is 20cm, calculate the potential energy of the student at the maximum height

Answers

Answer:

the answer is 49000 joules at the maximum height

Explanation:

we know the mass (50kg)

we know the acceleration due to gravity(9.8m/s²)

we know the height too(maximum height meaning the 50th step so we multiply 50 with 20cm as each step is 20 cm and we get 1000 cm, convert to m it is 100 m

the formula is potential energy=mgh

m for mass

g for acceleration due to gravity

h for height

multiply them

50x9.8x100

we get 49000

the unit of potential energy is joules so the answer is

49000 joules

Answer:

49000 joules

Explanation:

hope it helpss

why do atom absorb photon since it makes it unstable??​

Answers

[tex]\textsf{When an electron is hit by a }[/tex] [tex]\textsf{photon of light, it absorbs the quanta}[/tex] [tex]\textsf{of energy the photon was carrying}[/tex] [tex]\textsf{and moves to a higher energya}[/tex] [tex]\textsf{ state. Electrons therefore have to }[/tex] [tex]\textsf{jump around within the atom as }[/tex] [tex]\textsf{they either gain or lose energy. }[/tex]

When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. Electrons therefore have to jump around within the atom as they either gain or lose energy.

Hope this answer helps you..!!!

.

.

Select it as the BRAINLIEST..!!

A rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand.
(a) At what angle was the ball thrown if its initial speed was 12.0 m/ s, assuming that the smaller of the two possible angles was used?
(b) What other angle gives the same range, and why would it not be used?
(c) How long did this pass take?

Answers

Answer:

a)   θ = 14.23º, b)   θ₂ = 75.77,  c) t = 0.6019 s

Explanation:

This is a missile throwing exercise.

a) the reach of the ball is the distance traveled for the same departure height

          R = [tex]\frac{v_o^2 \ sin 2 \theta }{g}[/tex]

          sin 2θ = [tex]\frac{Rg}{v_o^2}[/tex]

          sin 2θ = 7.00 9.8 / 12.0²

          2θ = sin⁻¹ (0.476389) = 28.45º

           θ = 14.23º

the complementary angle that gives the same range is the angle after 45 that the same value is missing to reach 90º

          θ ’= 90  -14.23

          θ’= 75.77º

b) the two angles that give the same range are

         θ₁ = 14.23

         θ₂ = 75.77

the greater angle has a much greater height so the time of the movement is greater and has a greater chance of being intercepted by the other team.

C) the time of the pass can be calculated with the expression

                       

           x = v₀ₓ t

           t = x / v₀ₓ

           t = 7 / 11.63

           t = 0.6019 s


The area around a charged object that can exert a force on other charged objects is an electric ___

Answers

Answer is:

Electric field.

what is the dimensional formula of young modulas​

Answers

Answer:

The dimensional formula of Young's modulus is [ML^-1T^-2]

Answer:

G.oogle : The dimensional formula for Young’s modulus is:

A. [ML−1T−2]A. [ML−1T−2]

B. [M0LT−2]B. [M0LT−2]

C. [MLT−2]C. [MLT−2]

D. [ML2T−2]

A crude approximation is that the Earth travels in a circular orbit about the Sun at constant speed, at a distance of 150,000,000 km from the Sun. Which of the following is the closest for the acceleration of the Earth in this orbit?
A. exactly 0 m/s2.
B. 0.006 m/s2.
C. 0.6 m/s2.
D. 6 m/s2.
E. 10 m/s2.

Answers

Answer:

The answer is "Option B".

Explanation:

[tex]r=15\times 10^{7}\ km\ = 15\times 10^{10}\ m\\\\w=\frac{2\pi}{1\ year}\\\\=\frac{2\pi}{1\times 365.24 \times 24 \times 60 \times 60\ sec}\\\\a=w^2r\\\\=(\frac{2\pi}{1\times 365.24 \times 24 \times 60 \times 60\ sec})^2 \times 15 \times 10^{10}\ \frac{m}{s^2}\\\\[/tex]

[tex]=5.940 \times 10^{-3} \ \frac{m}{s^2}\\\\=6 \times 10^{-3} \ \frac{m}{s^2}\\\\=0.006\ \frac{m}{s^2}\\\\[/tex]

Definition of distance in physics

Answers

Answer:

Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.

Explanation:

A 2.5 kg block slides along a frictionless surface at 1.5 m/s.A second block, sliding at a faster 4.1 m/s , collides with the first from behind and sticks to it. The final velocity of the combined blocks is 2.5 m/s. What was the mass of the second block?

Answers

Answer:

1.5kg

Explanation:

Given data

mass m1= 2.5kg

mass m2=??

velocity of mass one v1= 1.5m/s

velocity of mass two v2= 4.1m/s

common velocity after impact v= 2.5m/s

Let us apply the formula for the conservation of linear momentum for inelastic collision

The expression is given as

m1v1+ m2v2= v(m1+m2)

substitute

2.5*1.5+ m2*4.1= 2.5(2.5+m2)

3.75+4.1m2= 6.25+2.5m2

collect like terms

3.75-6.25= 2.5m2-4.1m2

-2.5= -1.6m2

divide both sides by -1.6

m2= -2.5/-1.6

m2= 1.5 kg

Hence the second mass is 1.5kg

In a double-slit experiment, the slit separation is 1.75 mm, and two coherent wavelengths of light, 425 nm and 510 nm, illuminate the slits. At what angle from the centerline on either side of the central maximum will a bright fringe from one pattern first coincide with a bright fringe from the other pattern

Answers

Answer:

the required angle is 0.0834879⁰

Explanation:

Given  the data in the question;

slit separation; d = 1.75 mm = 1.75 × 10⁻³ m

wavelength λ₁ = 425 nm = 425 × 10⁻⁹ m

wavelength λ₂ 510 nm = 510 × 10⁻⁹ m

Now, we know that, the angle at which a particular bright fringe occurs on either side of the central bright fringe will be;

tanθ = [tex]y_m[/tex] / D = mλ/d

since they both coincides;

tanθ₁ = tanθ₂

m₁λ₁/d = m₂λ₂/d

multiply both sides by d

so,

m₁/m₂ = λ₂/λ₁

we substitute

m₁/m₂ = 510 nm / 425 nm

m₁/m₂ = 510 nm / 425 nm

divide through by 85

m₁/m₂ = 6 / 5

hence m₁ and m₂ are 6 and 5

so, from the previous formula

tanθ₂ = m₂λ₂/d

we substitute

tanθ₂ = [ 5 × ( 510 × 10⁻⁹ m ) ] / 1.75 × 10⁻³ m

tanθ₂ = 255 × 10⁻⁸ m / 1.75 × 10⁻³ m

tanθ₂ = 255 × 10⁻⁸ m / 1.75 × 10⁻³ m

tanθ₂ = 0.00145714

θ₂ = tan⁻¹( 0.00145714 )

θ₂ = 0.0834879⁰

Therefore, the required angle is 0.0834879⁰

An observer on Earth sees rocket 1 leave Earth and travel toward Planet X at 0.3c. The observer on Earth also sees that Planet X is stationary. An observer on Planet X sees rocket 2 travel toward Earth at 0.4c. What is the speed of rocket 1 according to an observer on rocket 2?

Answers

Answer:

0.625 c

Explanation:

Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.

In the context,

The relative speed of body 2 with respect to body 1 can be expressed as :

[tex]$u'=\frac{u-v}{1-\frac{uv}{c^2}}$[/tex]

Speed of rocket 1 with respect to rocket 2 :

[tex]$u' = \frac{0.4 c- (-0.3 c)}{1-\frac{(0.4 c)(-0.3 c)}{c^2}}$[/tex]

[tex]$u' = \frac{0.7 c}{1.12}$[/tex]

[tex]u'=0.625 c[/tex]

Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c

What is the mass of the diver in (Figure 1) if she exerts a torque of 2200 N⋅m on the board, relative to the left (A) support post?

A-->B = 1.0m
B--> end of board = 3.0m

Answers

Answer:

56.1 kg

Explanation:

Given

[tex]T = 2200Nm[/tex] -- torque

[tex]d_1 = 1.0m[/tex]

[tex]d_2 = 3.0m[/tex]

Required

The mass of the diver

From the question, we understand that the diver is at the extreme of the board.

So, we make use of the following torque equation

[tex]T = F * (d_1 + d_2)[/tex]

Where:

[tex]F \to Force[/tex]

So, we have:

[tex]2200 = F * (1.0 + 3.0)[/tex]

[tex]2200 = F * 4.0[/tex]

Divide both sides by 4.0

[tex]550 = F[/tex]

[tex]F = 550 N[/tex] --- This is the force exerted by the diver (in other words, the weight).

To calculate the mass, we use:

[tex]F = mg[/tex]

Make m the subject

[tex]m = \frac{F}{g}[/tex]

This gives:

[tex]m = \frac{550}{9.8}[/tex]

[tex]m = 56.1kg[/tex]

From the given picture What's the force? And where did it happen? (at least 2 forces)

Answers

Answer:

the force happens on the wall and couch

Explanation:

she is using her arm strength to lift and hold

given A=4i-10j and B= 7i+5j find b such that A+bB is a vector pointing along the x-axis (i.e has no y component)​

Answers

Answer:

-4/7

Explanation:

Given the following

A=4i-10j and B= 7i+5j

A+ bB = 4i-10j + (7i+5j)b

A+ bB =  4i-10j + 7ib+5jb

A+ bB =

The vector along the x-axis is expressed as i + 0j

If the vector A+ bB is pointing in the direction of the x-axis then;

[tex]A+ bB * \frac{i+0j}{|i+0j|} = 0 \\ (4+7b)i-(10-5b)j* \frac{i+0j}{\sqrt{1^2+0^2} } = 0\\(4+7b)i-(10-5b)j *(i+0j) = 0\\4+7b-0 =0\\7b=-4\\b = -4/7[/tex]

Hence the value of b is -4/7

The value of [tex]\beta[/tex] such that [tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] is 2.

According to the statement, we have following system of vectorial equations:

[tex]\vec A = 4\,\hat {i} - 10\,\hat{j}[/tex] (1)

[tex]\vec {B} = 7\,\hat{i} + 5\,\hat{j}[/tex] (2)

[tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] (3)

By applying (1) and (2) in (3):

[tex](4\,\hat{i}-10\,\hat{j}) + \beta\cdot (7\,\hat{i}+5\,\hat{j}) = c\,\hat{i}[/tex]

[tex](4+7\cdot \beta)\,\hat{i} +(-10+5\cdot \beta)\,\hat{j} = c\,\hat{i}[/tex]

And we get two scalar equations after analyzing each component:

[tex]4+7\cdot \beta = c[/tex] (4)

[tex]-10+5\cdot \beta = 0[/tex] (5)

We solve for [tex]\beta[/tex] in (5):

[tex]\beta = 2[/tex]

And for [tex]c[/tex] in (4):

[tex]c = 4+7\cdot (2)[/tex]

[tex]c = 18[/tex]

The value of [tex]\beta[/tex] such that [tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] is 2.

Please see this question related to Sum of Vectors for further details: https://brainly.com/question/11881720

A motorcyclist start from rest to reaches 6m/s with uniform acceleration for 3s what his acceleration?​

Answers

Answer:

[tex]\boxed {\boxed {\sf 2 \ m/s^2}}[/tex]

Explanation:

Acceleration is the rate of change in velocity with respect to time. It is calculated by dividing the change in velocity by the change in time. The formula is:

[tex]a= \frac{ \Delta v}{\Delta t}[/tex]         or          [tex]a= \frac{v_f-v_i}{\Delta t}[/tex]

The change in velocity is the difference between the initial velocity and the final velocity. The motorcycle starts at rest, or 0 meters per second and reaches 6 meters per second. The change in time is 3 seconds.

[tex]\bullet \ v_f= 6 \ m/s\\\bullet \ v_i= 0 \ m/s \\\bullet \ \Delta t = 3 \ s[/tex]

Substitute the values into the formula

[tex]a= \frac { 6 \ m/s - 0 m/s}{3 \ s}[/tex]

Solve the numerator.

[tex]a= \frac{6 \ m/s}{3 \ s}[/tex]

[tex]a= 2 \ m/s^2[/tex]

The motorcyclist's acceleration is 2 meters per second squared.

Twin skaters approach each other with identical speeds. Then, the skaters lock hands and spin. Calculate their final angular velocity, given each had an initial speed of 2.50 m/s relative to the ice. Each has a mass of 70.0 kg, and each has a center of mass located 0.800 m from their locked hands. You may approximate

Answers

Answer:

[tex]\omega=3.135rad/s[/tex]

Explanation:

From the question we are told that:

initial Speed [tex]V_1=2.50[/tex]

Mass [tex]m=70.0kg[/tex]

Center of mass [tex]d=0.0.800m\[/tex]

Generally the equation for angular velocity is is mathematically given by

[tex]\omega=\frac{v}{r}\\\\\omega=\frac{2.50}{0.0800}[/tex]

[tex]\omega=3.135rad/s[/tex]

A 15kg mass suspended from a ceiling is pulled aside with a horizontal force, F. Calculate the value of the tension.​

Answers

Answer:

147 Newtons

Explanation:

To find tension, you can use the formula Tension = (mass)(gravity)

*Gravity's acceleration = 9.8 m/s^2 because of Newton's law of universal gravitation*

T = (15kg)(9.8m/s^2)

  = 147 Newtons

Hope this helps! Best of luck <3

How much amount of water can be decomposed
through electrolysis by passing 2 F charge?

Answers

Answer:

So, with 2 Faraday of electricity, we can decompose (2/4 × 2) = 1 mole of water. So 18 grams of water is decomposed.

Solve numerical problem. Please give me step - step explanation Help me out plz

Answers

Answer:

You should multiply 60 kg*9.8 and answer will come.

Hope this will help you.

Answer:

yes she is right you should multiple 60*9.8

have a great day God bless you

Why are hydraulic brakes used?​

Answers

Answer:

Hydraulic brake systems are used as the main braking system on almost all passenger vehicles and light trucks. Hydraulic brakes use brake fluid to transmit force when the brakes are applied.

Explanation:

A 100 kg man is one fourth of the way up a 4.0 m ladder that is resting against a smooth, frictionless wall. The ladder has mass 25 kg and makes an angle of 56 degrees with the ground. What is the magnitude of the force of the wall on the ladder at the point of contact, if this force acts perpendicular to the wall and points away from the wall

Answers

Answer:

[tex]N_f=248N[/tex]

Explanation:

From the question we are told that:

Mass [tex]m=100kg[/tex]

Ladder Length [tex]l=4.0m[/tex]

Mass of Ladder [tex]m_l=25kg[/tex]

Angle [tex]\theta=56 \textdegree[/tex]

Generally the equation for Co planar forces is mathematically given by

[tex]mgcos \theta *2+Mgcos\theta*1 -N_fsin \theta*4=0[/tex]

Therefore

[tex]25*9.81cos 56 *2+100*9.81cos56*1 -N_fsin 56*4=0[/tex]

[tex]N_f=248N[/tex]

What Are the type's of Tidal turbines?

Answers

Answer:

Types of tidal turbines

Axial turbines.

Crossflow turbines.

Flow augmented turbines.

Oscillating devices.

Venturi effect.

Tidal kite turbines.

Turbine power.

Resource assessment.

Answer:

Axial turbines

Crossflow turbines

flow augmented turbines

Consider a 200-ft-high, 1200-ft-wide dam filled to capacity. Determine (a) the hydrostatic force on the dam and (b) the force per unit area of the dam near the top and near the bottom. Note: we will see that the resultant hydrostatic force will be

Answers

Answer:

a)  [tex]F_g=1.5*10^9Ibf[/tex]

b)  [tex]F_t=12490Ibf/ft^2[/tex]

     [tex]F_b=0[/tex]

Explanation:

From the question we are told that:

Height [tex]h=200ft[/tex]

Width [tex]w=1200ft[/tex]

a)

Generally the equation for Dam's Hydro static force is mathematically given by

[tex]F_g=\rho*g*\frac{h}{2}(w*h)[/tex]

Where

[tex]\rho=Density\ of\ water[/tex]

[tex]\rho=62.4Ibm/ft^3[/tex]

Therefore

[tex]F_g=62.4*32.2*\frac{200}{2}(1200*200)[/tex]

[tex]F_g=1.5*10^9Ibf[/tex]

b)

Generally the equation for Dam's Force per unit area is mathematically given by

[tex]F=\rho*g*h[/tex]

For Top

[tex]F_t=\rho*g*h[/tex]

[tex]F_t=62.4*32.2*200[/tex]

[tex]F_t=12490Ibf/ft^2[/tex]

For bottom

[tex]Here \\H=0 zero[/tex]

Therefore

[tex]F_b=0[/tex]

The hydrostatic force on the dam is [tex]2.995 \times 10^9 \ lbF[/tex].

The force per unit area near the top is 86.74 psi.

The force per unit area near the bottom is zero.

Hydrostatic force

The hydrostatic force on the dam is the force exerted on the dam by the column of the water.

[tex]F = PA\\\\F = (\rho gh) \times (wh)\\\\F = (62.4 \times 32.17 \times 200) \times (1200 \times 200)\\\\F = 9.636 \times 10^{10} \ lb-ft/s^2\\\\1 \ lbF = 32.17\ lb-ft/s^2\\\\F = 2.995 \times 10^9 \ lbF[/tex]

Force per unit area near the top

The force per unit area is the pressure exerted near the top of the dam.

[tex]P = \rho gh\\\\P = 0.052 \times \rho h[/tex]

where;

P is pressure in PSI

ρ is density of water in lb/gal

h is the vertical height in ft

[tex]P = 0.052 \times 8.34 \times 200\\\\P = 86.74 \ Psi[/tex]

The pressure near the bottom is zero, become the vertical height is zero.

Learn more about hydrostatic pressure here: https://brainly.com/question/11681616

The position of a particle is given by ~r(t) = (3.0 t2 ˆi + 5.0 ˆj j 6.0 t kˆ) m

Answers

Answer:

[tex]v=(6ti+6k)\ m/s[/tex]

Explanation:

Given that,

The position of a particle is given by :

[tex]r(t) = (3.0 t^2 i + 5.0j+ 6.0 tk) m[/tex]

Let us assume we need to find its velocity.

We know that,

[tex]v=\dfrac{dr}{dt}\\\\=\dfrac{d}{dt}(3.0 t^2 i + 5.0j+ 6.0 tk) \\\\=(6ti+6k)\ m/s[/tex]

So, the velocity of the particle is [tex](6ti+6k)\ m/s[/tex].

herical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.010-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.010-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass tran

Answers

Answer: Below is the complete question

A spherical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.0x10-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.0x10-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass transfer coefficient (m/s)

answer:

mass transfer coefficient = 9.56 * 10^-5 m/s

Explanation:

Candy density = 1950 kg/m^3

Candy diameter = 1 cm

Velocity of water = 1 m/s

water density = 1000 kg/m^3

Viscosity of water = 1 * 10^-3 kg/m/s

diffusion coefficient of candy in water = 2 * 10^-9 m^2/s

solubility of candy = 2 kg/m^3

Determine the mass transfer coefficient ( m/s )

( Sh) mass transfer coefficient ( flow across sphere ) = 2 + 0.6Re^1/2 * SC^1/3

where : Re = vdp / μ ,   Sh = KLd / Deff

attached below is the remaining solution .

mass transfer coefficient =  9.56 * 10^-5 m/s

A standard bathroom scale is placed on an elevator. A 28 kg boy enters the elevator on the first floor and steps on the scale. What will the scale read (in newtons) when the elevator begins to accelerate upward at 0.5 m/s2

Answers

Answer:

Explanation:

Newton's Second Law is pretty much the standard for all motion that involves a force. It applies to gravitational force and torque and friction and weight on an elevator. The main formula for force is

F = ma. We have to adjust that to take into account that when the elevator is moving up, that "surge" of acceleration weighs down a bit on the scale, causing it to read higher than the actual weight until the acceleration evens out and there is no acceleration at all (no acceleration simply means that the velocity is constant; acceleration by definition is a change in velocity, and if there is no change in velocity, there is 0 acceleration). The force equation then becomes

[tex]F_n-w=ma[/tex]  where [tex]F_n[/tex] is normal force. This is what the scale will read, which is what we are looking for in this problem (our unknown). Since we are looking for [tex]F_n[/tex], that is what we will solve this literal equation for:

[tex]F_n=ma+w[/tex] .  m is the mass of the boy, a is the acceleration of the elevator (which is going up so we will call that acceleration positive), and w is weight. We have everything but the unknown and the weight of the boy. We find the weight:

w = mg so

w = 28(9.8) and

w = 274.4 N BUT rounding to the correct number of significance we have that the weight is actually

w = 270 N.

Filling in the elevator equation:

[tex]F_n=28(.50)+270[/tex] and according to the rules of significant digits, we have to multiply the 28(.50) {notice that I did add a 0 there for greater significance; if not that added 0 we are only looking at 1 significant digit which is pretty much useless}, round that to 2 sig fig's, and then add to 170:

[tex]F_n=14+270[/tex] and adding, by the rules, requires that we round to the tens place to get, finally:

[tex]F_n=280N[/tex]  So you see that the surge in acceleration did in fact add a tiny bit to the weight read by the scale; conversely, if he were to have moved down at that same rate, the scale would have read a bit less than his actual weight). Isn't physics like the coolest thing ever!?

Air contained in a rigid, insulated tank fitted with a paddle wheel, initially at 300 K, 2 bar, and a volume of 2 m3, is stirred until its temperature is 500 K. Assuming the ideal gas model, for the air, and ignoring kinetic and potential energy, determine

Answers

Answer:

The final pressure in bar will be "[tex]\frac{10}{3} \ Bar[/tex]".

Explanation:

As we know,

PV = nRT

[tex]\frac{P_1}{T_1} =\frac{P_2}{T_2} =CONST[/tex]

then,

⇒ [tex]\frac{2 \ bar}{300 \ K} = \frac{P_2}{500 \ K}[/tex]

⇒ [tex]P_2=(\frac{2}{300}\times 500 )Bar[/tex]

        [tex]=\frac{10}{3} \ Bar[/tex]

Thus the above is the correct answer.

Other Questions
Use the graph to complete the statement. O is the origin.T r(90,O) : (4,-1) Use the circle to represent the following situation and show how you came up with the answer. For lunch, you stop at a Pizza Express, where they sell pizza whole or by the slice. The area of one slice of a 16" pizza is 33.49in. What angle does one slice make Hey guys if you could help ASAP thank you The proportion of the variation in the dependent variable y that is explained by the estimated regression equation is measured by the _____. a. coefficient of determination b. correlation coefficient c. confidence interval estimate d. standard error of the estimate what is curriculum integration Answer:Step by step explanation: It takes Jacob 25 minutes to line 2/3 of the flag football field. At this rate, how long will it take to line the entire field. * You flip a coin that is not fair, the prbability of heads on each flip is 0.7. if the coin shows heads, you draw a marble from urn h with 1 blue and 4 red marbles. if the coin shows tails, you draw a marble from urn t with 3 blue and 1 red marble. Find the following probabilities:a. The probability of choosing a red marble. b. The probability of choosing a blue marble, given that the coin showed heads. c. The probability that the coin showed tails, given that the marble was red. The area of a square is given as (s)6.What is its perimeter? A van of mass 1200kg is moving with speed of 90km/hr. It is brought in 3 seconds by applying brakes. Calculate the force applied to bring van to rest. What information is NOT necessary to find the area of a circle?a.pic.diameterb.radiusd.height express the following in standard form 1) 5,94,00,00,00,0002) 6892.25 Plz tell What is the dimension of the vector space consisting of five-by-one column matrices where the rows sum to zero and the first row is equal to the second row? a. 5 b. 4 c. 3 d. 2 at the supermarket, andy paid 11.50 for a water melon and five apples khairi paid 15.85 for one such watermelon and 10 such apples . find the cost of one such watermelon Joe owns a stock with a beta of 1.5 and a standard deviation of 12%. The stock returned 16%. Ella owns a stock with a beta of 1.34 and a standard deviation of 16.4%. The stock has a total return of 14.8%. The risk free rate is 2.5%. Using the Sharpe ratio, which portfolio performed better PLEASE HELP!! URGENT Mark rolls a fair dice 36 times. How many times would Mark expect to roll a number greater than 5? Why arent magazine photos a good representation of what a healthy person looks like Find the radius of the circle containing 18 degree arc of a circle whose length is 15 Pi meters An auto mechanic needs to determine the emf and internal resistance of an old battery. He performs two measurements: in the first, he applies a voltmeter to the battery's terminals and reads 11.9 V;11.9 V; in the second, he applies an ammeter to the terminals and reads 16.1 A.16.1 A.What are the battery's emf E and internal resistance r?