At highway speeds, a particular automobile is capable of an acceleration of about 1.8 m/s^2. At this rate, how long does it take to accelerate from 60 km/h to 110 km/h?

Express your answer to two significant figures and include the appropriate units.

Answers

Answer 1

The time it takes to accelerate from 60 km/h to 110 km/h at a rate of 1.8 m/s^2 is approximately 7.8 seconds.

The acceleration of the automobile is given as 1.8 m/s^2. To calculate the time required for acceleration, we need to convert the given speeds from km/h to m/s.

First, we convert 60 km/h to m/s:

60 km/h = (60,000 m) / (3600 s) ≈ 16.67 m/s

Next, we convert 110 km/h to m/s:

110 km/h = (110,000 m) / (3600 s) ≈ 30.56 m/s

Now, we can calculate the change in velocity (Δv):

Δv = (30.56 m/s) - (16.67 m/s) ≈ 13.89 m/s

Finally, we can use the equation of motion to find the time (t):

Δv = a * t

13.89 m/s = (1.8 m/s^2) * t

t ≈ 7.72 s

Rounding to two significant figures, the time it takes to accelerate from 60 km/h to 110 km/h is approximately 7.8 seconds.

To learn more about acceleration, click here:

brainly.com/question/2303856

#SPJ11


Related Questions

If Sarah switched the lens from low power to high power, what would she see in the field of view?

Answers

If Sarah switched the lens from low power to high power, the field of view would appear magnified, allowing her to see objects in greater detail and potentially reveal finer features or structures.

The field of view refers to the area visible through a lens or microscope. When Sarah switches the lens from low power to high power, the magnification increases, meaning that objects in the field of view will appear larger. This increased magnification allows for greater detail to be observed.

By switching to high power, Sarah may be able to see smaller or more intricate structures that were not visible with the low-power lens. Fine details such as cellular structures or small organisms can become more apparent with higher magnification. It is important to note that switching to high power also reduces the overall area visible in the field of view, as the increased magnification narrows down the focus. However, the trade-off is the ability to observe finer details within the restricted field.

Learn more about microscope here:

https://brainly.com/question/9255183

#SPJ11

Given the Kinematics in 1D problem below and the set of possible answers, match the choices with their correct representation. An object starts from rest and uniformly accelerates to 10 m/s while moving 20 m. The acceleration of the object is; A. 2.5 m/s/s B. +2.5 m/s C. +2.5 m/s/s D. 4 m/s/s E. +4 m/s A [Choose] B correct unit of measurement, but missing direction and incorrect magnitude correct magnitude and direction, but incorrect unit of measurement correct magnitude and unit of measurement, but missing direction correct answer C correct direction. but incorrect magnitude and unit of measurement

Answers

Based on the analysis, the correct representation that matches the given problem is: C. +2.5 m/s/s, which represents the acceleration with the correct magnitude, unit of measurement, and direction.

Based on the given information, we can analyze the options and match them with the correct representation.

The problem states that the object starts from rest and uniformly accelerates to 10 m/s while moving 20 m.

Let's go through the options:

A. 2.5 m/s/s: This option represents the acceleration with a magnitude of 2.5 m/s/s, but it does not mention the direction. Therefore, it is missing the direction information.

B. +2.5 m/s: This option represents the acceleration with the correct direction (+) and magnitude (2.5 m/s). However, it is missing the correct unit of measurement for acceleration.

C. +2.5 m/s/s: This option represents the acceleration with the correct direction (+) and magnitude (2.5 m/s/s). It also includes the correct unit of measurement for acceleration. This option seems to be the correct answer.

D. 4 m/s/s: This option represents the acceleration with a magnitude of 4 m/s/s, but it does not mention the correct direction. Therefore, it is missing the direction information.

E. +4 m/s: This option represents the acceleration with the correct direction (+), but it has an incorrect magnitude (4 m/s). Additionally, it is missing the correct unit of measurement for acceleration.

To know more about acceleration

brainly.com/question/28743430

#SPJ11

At what distance along the central perpendicular axis of a uniformly charged plastic disk of radius 0.600 m is the magnitude of the electric field equal to one-half the magnitude of the field at the centre of the surface of the disk?

Answers

The distance along the central perpendicular axis of a uniformly charged plastic disk, where the magnitude of the electric field is equal to one-half the magnitude of the field at the center of the disk's surface. The distance is approximately 0.150 m.

The electric field at the center of a uniformly charged disk can be calculated using the formula E = σ/(2ε₀), where σ represents the surface charge density and ε₀ is the permittivity of free space. At the center of the disk, the electric field is given by E_center = σ/(2ε₀).

To find the distance along the central perpendicular axis where the electric field is one-half of E_center, we can set up the equation E = E_center/2 and solve for the distance. Plugging in the known values, we have E = σ/(4ε₀). Equating this expression with E_center/2, we get σ/(4ε₀) = σ/(2ε₀), which simplifies to 1/4 = 1/2. Solving for the distance, we find that it is approximately 0.150 m.

Learn more about electric field click here:

brainly.com/question/11482745

#SPJ11

In an evacuated tube electrons produce X-rays by accelerating from rest through a voltage of 0.39kV and striking a copper plate. Nonrelativistically, what would be the maximum speed of these electrons, in meters per second? v=

Answers

The maximum speed of these electrons, in meters per second would be 7.21 × 10⁵ m/s.

We know that kinetic energy of a charged particle in an electric field is given by qV= (1/2)mv² where, q is the charge of the particle, V is the voltage through which the particle has been accelerated, m is the mass of the particle, v is the velocity of the particle.

Using the above formula for v, we have; v= sqrt(2qV/m) Where v is the speed of the electrons. Non-relativistically, we can assume that the mass of an electron is 9.11 x 10⁻³¹ kg. q = 1.60 × 10⁻¹⁹ C (charge of the electron) and V = 0.39 kV.

v = sqrt((2 × 1.60 × 10⁻¹⁹ C × 0.39 kV)/(9.11 x 10⁻³¹ kg))v = 7.21 x 10⁵ m/s.

Therefore, the maximum speed of these electrons, in meters per second would be 7.21 × 10⁵ m/s.

Learn more about speed : https://brainly.com/question/13943409

#SPJ11

A converging lens has a focal length of 18.6 cm. Construct accurate ray diagrams for object distances of (i) 3.72 cm and (ii) 93.0 cm.

(d) What is the magnification of the image?

Image (i)
Image (ii)

Answers

The magnification of the image formed for an object distance of 93.0 cm is approximately -0.1667.

To determine the magnification of the image formed by a converging lens, we can use the lens formula:

1/f = 1/v - 1/u

where:

f is the focal length of the lens,

v is the image distance (distance of the image from the lens),

u is the object distance (distance of the object from the lens).

Using the magnification formula:

magnification (m) = -v/u

where the negative sign indicates that the image formed is inverted.

Let's calculate the magnification for each scenario:

(i) Object distance (u) = 3.72 cm

Using the lens formula:

1/18.6 cm = 1/v - 1/3.72 cm

To solve for v, we can rearrange the equation:

1/v = 1/18.6 cm + 1/3.72 cm

1/v = (1 + 5)/18.6 cm

1/v = 6/18.6 cm

v = 18.6 cm / 6

v = 3.1 cm

Using the magnification formula:

magnification (m) = -v/u

magnification (m) = -3.1 cm / 3.72 cm

magnification (m) ≈ -0.83

Therefore, the magnification of the image formed for an object distance of 3.72 cm is approximately -0.83.

(ii) Object distance (u) = 93.0 cm

Using the lens formula:

1/18.6 cm = 1/v - 1/93.0 cm

To solve for v, we can rearrange the equation:

1/v = 1/18.6 cm + 1/93.0 cm

1/v = (5 + 1)/93.0 cm

1/v = 6/93.0 cm

v = 93.0 cm / 6

v = 15.5 cm

Using the magnification formula:

magnification (m) = -v/u

magnification (m) = -15.5 cm / 93.0 cm

magnification (m) ≈ -0.1667

Therefore, the magnification of the image formed for an object distance of 93.0 cm is approximately -0.1667.

Learn more about magnification from the given link!

https://brainly.com/question/3480304

#SPJ11

2. A magnetic field points in the +z direction (out of the screen) and a positive point charge is moving in the positive x direction. What trajectory will the point charge follow? Counter clockwise circle, straight line in the +y direction, not enough information, straight line in the -y direction, circle of unknown direction, clockwise circle.

Answers

The trajectory of the point charge will be a counter clockwise circle.

When a charged particle moves in a magnetic field, it experiences a force perpendicular to both the velocity of the particle and the magnetic field direction. In this scenario, the magnetic field points in the +z direction (out of the screen), and the point charge is moving in the positive x direction. Since the velocity of the particle (in the x direction) and the magnetic field (in the z direction) are perpendicular to each other, the resulting force will act in the y direction. This force will cause the point charge to move in a circular path around the magnetic field lines. According to the right-hand rule, when the force is perpendicular to the velocity and points towards the center of the circle, the trajectory will be a counter clockwise circle. Therefore, the correct answer is option (a) - the point charge will follow a counter clockwise circle.

Learn more about magnetic field here:

https://brainly.com/question/31217495

#SPJ11

There are 200 students in a classroom, each one with a modern WiFi device supporting wireless Internet connection. The average SNR in the room is γ
0

=10 dB and the threshold SNR (for reliable link connection) is γ
th

=10 dB. Assuming that each link experiences independent and identically distributed (i.i.d.) Rayleigh fading, - how many students on average will not be able to connect? - How your answer would change if γ
0

=20 dB ? - What if fading is Ricean with K=0 dB and γ
th

=10 dB,γ
0

=20 dB ? - How does this change if K increases to 10 dB ? - Compare all your answers and make recommendations for a contractor installing a WiFi access point.

Answers

1. To calculate the number of students on average who will not be able to connect, we need to determine the probability that a link's SNR falls below the threshold SNR. Since the SNR follows a Rayleigh distribution, we can use the cumulative distribution function (CDF) to find this probability.

2. The CDF of the Rayleigh distribution is given by P(X ≤ x) = 1 - e^(-x^2/σ^2), where x is the threshold SNR and σ^2 is the variance of the distribution. In this case, since the SNR follows i.i.d. Rayleigh fading, the variance is equal to twice the average SNR.

3. Substituting the values γ0 = 10 dB and γth = 10 dB into the CDF formula, we can calculate the probability that a link's SNR falls below the threshold SNR. Let's call this probability p.

4. The number of students on average who will not be able to connect is equal to p multiplied by the total number of students (200). Therefore, the average number of students who will not be able to connect is 200 * p.

5. If γ0 = 20 dB, we need to recalculate the variance of the Rayleigh distribution using the new average SNR. Since the variance is equal to twice the average SNR, the new variance will be 2 * 20 dB = 40 dB.

6. Following the same steps as before, we can calculate the probability p for the new average SNR of 20 dB and then find the average number of students who will not be able to connect using the formula 200 * p.

7. If the fading is Ricean with K = 0 dB, the Ricean distribution can be used instead of the Rayleigh distribution. The Ricean distribution has a probability density function (PDF) given by f(x) = (x + K)e^(-x^2/2σ^2)I0((Kx)/σ^2), where I0 is the modified Bessel function of the first kind and order zero.

8. By integrating the PDF from the threshold SNR to infinity, we can find the probability p for the Ricean fading scenario. Then, we can calculate the average number of students who will not be able to connect using the formula 200 * p.

9. If K increases to 10 dB, we need to recalculate the probability p using the new value of K. The average number of students who will not be able to connect can then be calculated using the formula 200 * p.

10. Comparing all the answers, we can see how different fading scenarios and average SNR values affect the number of students who cannot connect. This information can be used by a contractor installing a WiFi access point to determine the expected number of users who may experience connection issues. Based on this analysis, the contractor can make recommendations to improve the WiFi coverage, such as adding more access points or adjusting their placement to reduce the number of students who cannot connect.

In summary, to calculate the average number of students who will not be able to connect, we need to use the appropriate distribution (Rayleigh or Ricean) and calculate the probability that a link's SNR falls below the threshold SNR. By multiplying this probability by the total number of students, we can determine the average number of students who will not be able to connect.

To know more about determine visit :

https://brainly.com/question/29898039

#SPJ11

parallel-plate capacitor with area 0.500 m2 and plate separation of 2.60 mm is connected to a 5.00-V battery.

Answers

The electric field between the plates is approximately 1.92 x 10³ volts per meter.

First, we can determine the capacitance (C) of the parallel-plate capacitor using the formula:

C = ε₀ * (A / d)

where ε₀ is the vacuum permittivity (8.85 x 10⁻¹² F/m).

Substituting the given values into the formula:

C = (8.85 x 10⁻¹² F/m) * (0.500 m² / 0.00260 m)

Calculating the product:

C ≈ 1.70 x 10⁻⁰⁸ F

The capacitance of the parallel-plate capacitor is approximately 1.70 x 10⁻⁸ F.

Next, we can calculate the charge (Q) stored in the capacitor using the formula:

Q = C * V

Substituting the values:

Q = (1.70 x 10⁻⁸ F) * (5.00 V)

Calculating the product:

Q ≈ 8.50 x 10⁻⁸ C

The charge stored in the capacitor is approximately 8.50 x 10⁻⁸ coulombs.

Finally, we can determine the electric field (E) between the plates using the formula:

E = V / d

Substituting the values:

E = (5.00 V) / (0.00260 m)

Calculating the division:

E ≈ 1.92 x 10³ V/m

Learn more about electric field from:

https://brainly.com/question/19878202

#SPJ11

The trajectory of a projectile is a parabola. Use two position equations and prove that a projectile moves on a parabolic path.

Answers

The equation is quadratic, we can conclude that the trajectory of a projectile is a parabola.

To demonstrate that a projectile moves on a parabolic path, we can utilize two position equations: one for horizontal motion and another for vertical motion. Let's consider a projectile launched with an initial velocity of V₀ at an angle θ with respect to the horizontal.

For horizontal motion, we know that the only force acting on the projectile is gravity, which does not influence horizontal velocity. Therefore, the horizontal velocity remains constant throughout the motion, denoted as Vx = V₀ * cos(θ). The horizontal position of the projectile, x, can be expressed as x = V₀ * cos(θ) * t, where t represents time.

For vertical motion, the only force acting on the projectile is gravity, causing it to accelerate downwards. The vertical position of the projectile, y, can be described as y = V₀ * sin(θ) * t - (1/2) * g * t², where g represents the acceleration due to gravity.

By substituting the value of t from the horizontal position equation into the vertical position equation, we get y = (x * tan(θ)) - (g * x²) / (2 * V₀² * cos²(θ)). This equation represents the path of the projectile, and we observe that it is a quadratic equation in the form of y = ax² + bx + c, where a = -g / (2 * V₀² * cos²(θ)), b = tan(θ), and c = 0.

Since the equation is quadratic, we can conclude that the trajectory of a projectile is a parabola.

Learn more about quadratic from below link

https://brainly.com/question/1214333

#SPJ11

Projectile Motion 2. A projectile is fired horizontally from the top of a 35.0 m tower at an initial speed of 22.6 m/s. (a) How long is the projectile in the air before it lands? (b) What horizontal distance does it cover before it lands (i.e. what is the range)? (c) What is the speed (magnitude of velocity) of the projectile the instant before it hits the ground?

Answers

A projectile is given that is fired from the top of 35m tower with a speed of 22.6m/s. Duration before it lands is 2.67 seconds. It will cover 60.4m horizontally. It will have same speed before it hits the ground.

To solve this problem, we can use the equations of projectile motion. Let's break it down step by step:

(a) Duration when the projectile in the air before it lands:

Since the projectile is fired horizontally, its initial vertical velocity is 0 m/s. The only force acting on it vertically is gravity, which will cause it to accelerate downward. We can use the equation for vertical displacement:

Δy = Vyi * t + (1/2) * a * [tex]t^2[/tex],

where Δy is the vertical displacement, Vyi is the initial vertical velocity (0 m/s), a is the acceleration due to gravity (-9.8 m/s^2), and t is the time.

We know that the vertical displacement Δy is equal to -35.0 m (negative because it's downward), and we need to solve for t. Rearranging the equation, we have:

-35.0 = 0 * t + (1/2) * (-9.8) * t^2,

-35.0 = -4.9 * t^2.

Solving for t, we get:

[tex]t^2[/tex] = 35.0 / 4.9,

[tex]t^2[/tex] = 7.14,

t ≈ √7.14,

t ≈ 2.67 s.

So, the projectile is in the air for approximately 2.67 seconds before it lands.

(b) horizontal distance does it cover before it lands:

Since the projectile is fired horizontally, its horizontal velocity remains constant throughout its motion. The horizontal distance it covers (range) can be calculated using the equation:

Range = Vx * t,

where Vx is the horizontal velocity and t is the time.

Since the initial horizontal velocity is 22.6 m/s and the time is 2.67 s, we can calculate the range:

Range = 22.6 m/s * 2.67 s,

Range ≈ 60.4 m.

So, the projectile covers approximately 60.4 meters horizontally before it lands.

(c)  the speed (magnitude of velocity) of the projectile the instant before it hits the ground:

The horizontal speed of the projectile remains constant throughout its motion, so the speed (magnitude of velocity) just before it hits the ground is equal to the initial horizontal speed, which is 22.6 m/s.

Therefore, the speed of the projectile the instant before it hits the ground is 22.6 m/s.

Learn more about horizontal distance here:

https://brainly.com/question/25825784

#SPJ11

Two very large parallel sheets are 5.00 cm apart. Sheet A carries a uniform surface charge density of −6.80μC/m
2
, and sheet B, which is to the right of A, carries a uniform charge density of −12.1μC/m
2
. Assume that the sheets are large enough to be treated as infinite. Part C Find the magnitude of the net electric field these sheets produce at a point 4.00 cm to the left of sheet A.

Answers

The magnitude of the net electric field is 2.31 × 10⁶ N/C.

Distance between two parallel sheets = 5.00 cm

Surface charge density of sheet A = -6.80 μC/m²

Surface charge density of sheet B = -12.1 μC/m²

The distance of the point from sheet A = 4.00 cm

The magnitude of the net electric field these sheets produce at a point 4.00 cm to the left of sheet A.

To find out the magnitude of the net electric field, we need to first find the electric field intensity produced by sheet A and B separately. After that, we can add them vectorially to get the net electric field intensity.

Electric field due to sheet A:

By applying the electric field formula, we get:

Electric field due to sheet A = σ / (2ε₀)

Where,

σ is the surface charge density of the sheet, and

ε₀ is the permittivity of free space.

Substituting the given values of surface charge density, we get:

Electric field due to sheet A = (-6.80 × 10⁻⁶) / (2 × 8.85 × 10⁻¹²)

= 4.53 × 10⁶ N/C

The electric field due to sheet A is towards the right.

Electric field due to sheet B:

The direction of the electric field due to sheet B is towards the left.

Substituting the given values of surface charge density, we get:

Electric field due to sheet B = (-12.1 × 10⁻⁶) / (2 × 8.85 × 10⁻¹²)

= 6.84 × 10⁶ N/C

The electric field due to sheet B is towards the left.

Magnitude of the net electric field:

Both the electric fields due to sheet A and B are not in the same direction. So, the net electric field would be the difference between the electric field due to sheet B and the electric field due to sheet A.

At a point which is 4.00 cm to the left of sheet A, the net electric field can be calculated as:

E_net = E_B - E_A

Where, E_A and E_B are the electric fields due to sheet A and sheet B, respectively.

Substituting the known values, we get:

E_net = 6.84 × 10⁶ - 4.53 × 10⁶

= 2.31 × 10⁶ N/C

Therefore, the magnitude of the net electric field is 2.31 × 10⁶ N/C.

To learn more about magnitude, refer below:

https://brainly.com/question/31022175

#SPJ11

(a) What is the hot reservoir temperature of a Carnot engine that has an efficiency of 42.0% and a cold reservoir temperature of 27.0ºC ? (b) What must the hot reservoir temperature be for a real heat engine that achieves 0.700 of the maximum efficiency, but still has an efficiency of 42.0% (and a cold reservoir at 27.0ºC )? (c) Does your answer imply practical limits to the efficiency of car gasoline engines?

Answers

The hot reservoir temperature of a Carnot engine that has an efficiency of 42.0% and a cold reservoir temperature of 27.0ºC is 192ºC.In general, the Carnot engine's maximum efficiency can be calculated using the Carnot efficiency.

equation:ηCarnot = 1 - Tc/Thwhere,ηCarnot: Carnot engine efficiency Tc: Cold reservoir temperature Th: Hot reservoir temperature Rearrange the above equation to find the hot reservoir temperature:

Th = Tc / (1 - ηCarnot)

= 300 / (1 - 0.42)

= 516 K

= 243ºC

The hot reservoir temperature must be 353ºC for a real heat engine that achieves 0.700 of the maximum efficiency, but still has an efficiency of 42.0% (and a cold reservoir at 27.0ºC).

Real heat engine efficiency (ηreal) = 0.700 × ηCarnot = 0.700 × (1 - 27/Th)0.42

= 0.294 × (Th - 27) / Th

Rearrange the above equation to find the hot reservoir temperature:

Th = 27 / (1 - 0.294 × ηreal / (1 - ηreal))

= 300 / (1 - 0.294 × 0.700 / (1 - 0.700))

= 626 K

= 353ºC

Yes, this answer implies practical limits to the efficiency of car gasoline engines as car engines are real heat engines and cannot achieve the maximum efficiency of the Carnot engine. According to (b), even if a car gasoline engine achieved 70% of the maximum efficiency, the hot reservoir temperature would need to be raised to 353ºC to achieve that efficiency level.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

A river flows due south with a speed of 2.10 m/s. A man steers a motorboat across the river; his velocity relative to the water is 4.40 m/s. The river is 900 m wide. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Compensating for a crosswind. In which direction should the motorboat head in order to reach a point on the opposite bank directly east from the starting point? (The boat's speed relative to the water remains 4.40 m/s.) Express your answer in degrees. X Incorrect; Try Again; 7 attempts remaining Part B What is the velocity of the boat relative to the earth? Express your answer in meters per second. How much time is required to cross the river? Express your answer in seconds.

Answers

The motorboat should head approximately 26.3° to the north of east in order to reach a point directly east from the starting point. The velocity of the boat relative to the earth is approximately 5.8 m/s. The time required to cross the river is approximately 214 seconds.

Let the direction of the motorboat be θ. Thus, its components are 4.40 cos θ to the east and 4.40 sin θ to the north. The component of the river's velocity is 2.10 to the south. Therefore, the velocity of the boat relative to the earth is (4.40 cos θ) i + (4.40 sin θ + 2.10) j.

If the boat is to reach a point on the opposite bank directly east from the starting point, then it must travel in a direction perpendicular to the river. Thus, 4.40 cos θ = 2.10t, where t is the time taken to cross the river. Solving the above equation for θ, we get:

θ = arctan(2.10 / 4.40) = 26.3° (to the north of east)

Therefore, the boat should head 26.3° to the north of east. The velocity of the boat relative to the earth is given as:

(4.40 cos θ) i + (4.40 sin θ + 2.10) j = 4.40 cos 26.3° i + (4.40 sin 26.3° + 2.10) j = 4.0 i + 4.4 j.

The magnitude of velocity of the boat relative to the earth is:

|V| = √(4.0² + 4.4²) ≈ 5.8 m/s.

Thus, the velocity of the boat relative to the earth is approximately 5.8 m/s.

The time required to cross the river is given by:

t = 900 / 4.40 cos 26.3° ≈ 214 seconds.

Therefore, the time required to cross the river is approximately 214 seconds.

Learn more about velocity: https://brainly.com/question/80295

#SPJ11

Do the energy transfers obey the law of conservation of energy? Explain your rationale.

Answers

Yes, energy transfers obey the law of conservation of energy. The law of conservation of energy states that energy cannot be created or destroyed, but it can only be transferred or transformed from one form to another.

In any energy transfer process, the total amount of energy before and after the transfer remains constant. Energy can change its form (such as from kinetic energy to potential energy or vice versa), but the total energy in a closed system remains constant.

This principle is derived from the fundamental laws of physics, such as the conservation of momentum and the laws of thermodynamics. These laws have been extensively tested and verified through numerous experiments and observations.

Therefore, in any energy transfer or transformation, the total amount of energy involved remains constant, and thus, energy transfers obey the law of conservation of energy.

To know more about conservation of energy

brainly.com/question/28928306

#SPJ11

A 3.00−kg block rests on a level frictionless surface and is attached by a light string to a 2.00−kg hanging mass where the string passes over a massless frictionless pulley. (a) If g=9.8 m/s
2
, what is the tension in the connecting string when the system is at rest?

Answers

The tension in the connecting string when the system is at rest is 19.6 N.

When the system is at rest, the tension in the connecting string will be equal to the weight of the hanging mass.

Given:

Mass of the block (m₁) = 3.00 kg

Mass of the hanging mass (m₂) = 2.00 kg

Acceleration due to gravity (g) = 9.8 m/s^2

To find the tension in the connecting string, we can calculate the weight of the hanging mass using the formula:

Weight = mass * acceleration due to gravity

Weight of the hanging mass = m₂ * g

Weight of the hanging mass = 2.00 kg * 9.8 m/s^2

Weight of the hanging mass = 19.6 N.

To know more about tension

brainly.com/question/32506605

#SPJ11

12) A ball is launched horizontally with an initial velocity of 12 m/s from the platform of a tower that is 6.0 m tall (above ground level). a) (7p) After how many seconds does it hit the ground? b) (7p) What is the speed of the ball at the instant right before it lands on the ground?

Answers

The ball takes approximately 0.98 seconds to hit the ground. We can use the equation of motion: h = (1/2) * g * t^2. The speed of the ball at the instant right before it lands on the ground is approximately 15 m/s.

a) The ball will hit the ground after approximately 0.98 seconds.

To determine the time it takes for the ball to hit the ground, we can use the equation of motion:

h = (1/2) * g * t^2

where:

h is the height of the tower (6.0 m),

g is the acceleration due to gravity (9.8 m/s^2),

t is the time.

Since the ball is launched horizontally, its initial vertical velocity is zero. We can use this information to solve for time. Rearranging the equation, we have:

t = sqrt(2h/g)

Plugging in the values, we get:

t = sqrt(2 * 6.0 m / 9.8 m/s^2) ≈ 0.98 seconds.

Therefore, the ball takes approximately 0.98 seconds to hit the ground.

b) The speed of the ball at the instant right before it lands on the ground is approximately 12 m/s.

Since the ball is launched horizontally, its horizontal velocity remains constant throughout its motion. Therefore, the horizontal velocity at any point is equal to the initial horizontal velocity, which is 12 m/s.

As the ball falls vertically, it gains speed due to the acceleration of gravity. The vertical velocity just before hitting the ground can be determined using the equation:

v = g * t

where:

v is the vertical velocity,

g is the acceleration due to gravity,

t is the time it takes to hit the ground.

Substituting the values, we get:

v = 9.8 m/s^2 * 0.98 seconds ≈ 9.6 m/s.

However, since the horizontal and vertical motions are independent, the total speed of the ball just before hitting the ground is given by the Pythagorean theorem:

Speed = sqrt((horizontal velocity)^2 + (vertical velocity)^2)

Substituting the values, we have:

Speed = sqrt((12 m/s)^2 + (9.6 m/s)^2) ≈ 15 m/s.

Therefore, the speed of the ball at the instant right before it lands on the ground is approximately 15 m/s.

To learn more about speed click here

https://brainly.com/question/31756299

#SPJ11

With the aid of a string, a gyroscope is accelerated from rest to 39rad/s in 0.44 s. (a) What is its angular acceleration in rad/s
2
? 20rad/s
2
(b) How many revolutions does it go through in the process? - rev

Answers

The angular acceleration of the gyroscope is 88.64 rad/s². the gyroscope goes through approximately 6.20 revolutions in the process.

(a) To find the angular acceleration, we can use the formula:

Angular acceleration (α) = (Final angular velocity - Initial angular velocity) / Time

Initial angular velocity (ω₀) = 0 rad/s

Final angular velocity (ω) = 39 rad/s

Time (t) = 0.44 s

Substituting the values into the formula:

α = (39 rad/s - 0 rad/s) / 0.44 s

  = 88.64 rad/s²

Therefore, the angular acceleration of the gyroscope is 88.64 rad/s².

(b) To find the number of revolutions, we can use the formula:

Number of revolutions = Final angular displacement / (2π)

Since the initial angular displacement is 0, the final angular displacement is equal to the change in angular velocity.

Change in angular velocity = Final angular velocity - Initial angular velocity

                        = 39 rad/s - 0 rad/s

                        = 39 rad/s

Number of revolutions = (39 rad/s) / (2π)

                    ≈ 6.20 revolutions

Therefore, the gyroscope goes through approximately 6.20 revolutions in the process.

Learn more about angular acceleration here:

https://brainly.com/question/1980605

#SPJ11

The electron mass is 9×10
−31
kg. What is the momentum of an electron traveling at a velocity of (0,0,−2.8×10
6
) m/s?
rho

= lg⋅m/s What is the magnitude of the momentum of the electron? p= kg⋅m/s

Answers

The momentum of an electron traveling at a velocity of (0,0,-2.8x10^6) m/s is - 2.52 × 10^-24 kg.m/s.

Magnitude of the momentum of the electron is given byρ = |p| = √(px^2 + py^2 + pz^2)ρ = |p| = √[(0)^2 + (0)^2 + (-2.52 x 10^-24)^2]ρ = |p| = 2.52 x 10^-24 kg.m/s.

The momentum of an electron traveling at a velocity of (0,0,-2.8x10^6) m/s,

given the electron mass to be 9x10^-31 kg,

and the momentum (p) of the electron is calculated using the relation:

p=mv, where m is the mass of the electron and v is the velocity of the electron.

p = momentum of the electron = kg.m/s

m = mass of the electron = 9 x 10^-31 kg

v = velocity of the electron = (0, 0, -2.8 x 10^6) m/s

The momentum of an electron traveling at a velocity of (0,0,-2.8x10^6) m/s is - 2.52 × 10^-24 kg.m/s.

Magnitude of the momentum of the electron is given byρ = |p| = √(px^2 + py^2 + pz^2)ρ = |p| = √[(0)^2 + (0)^2 + (-2.52 x 10^-24)^2]ρ = |p| = 2.52 x 10^-24 kg.m/s.

To know more about momentum, visit:

https://brainly.com/question/30677308

#SPJ11

A mule is haressed to a sled having a mass of 201 kg, indoding sugplies. The mule muat exert a force exceeding 1220 N at an anglo of 36.3. (above the horizontal) in order ta get the sled moving. Trot the sled as a point particle. (4) Caiculate the normat ferce (in N ) sn the sied ahen the magnitude of the applied force is 1220 N. (Enter the magnituse.) N (b) Find wa ebetficient of static triction between the ved and the ground bencath ic. (c) Rind the static frictiso force (in N) when the mule is exerting a force of 6.10×10
2
N on the sled at the same angie. (Enter the mugnitude.)

Answers

The static friction force when the mule exerts a force of 6.10 × 10² N on the sled at the same angle is 339.16 N. Given:Mass of sled, m = 201 kg

Force exerted, F = 1220 N

Angle, θ = 36.3°

Part A:Calculate the normal force on the sled when the applied force is 1220 N.The normal force, FN can be found out as shown below;FN = mg - Fsinθ

Where, g = 9.8 m/s²

Substituting the given values, we get;FN = (201 × 9.8) - 1220sin(36.3)FN

= 1709.33 N

Thus, the normal force on the sled when the applied force is 1220 N is 1709.33 N.

Part B:Find the coefficient of static friction between the sled and the ground beneath it.The force of static friction can be found using the formula below;Ff = μs × FN

Where, Ff is the force of static frictionμs is the coefficient of static frictionFN is the normal force

Substituting the values obtained from Part A, we get;Ff = μs × 1709.33

At maximum, the force of static friction is given by;

Ff = Fcosθ

Hence, at maximum;Fcosθ = μs × FN

Thus,μs = Fcosθ / FNSubstituting the given values, we get;

μs = (1220cos36.3) / 1709.33μs

= 0.556

Thus, the coefficient of static friction between the sled and the ground beneath it is 0.556.

Part C:Find the static friction force when the mule exerts a force of 6.10 × 10² N on the sled at the same angle.The force of static friction is given by;Ff = μs × FN

Substituting the given values, we get;Ff = 0.556 × (6.10 × 10²)Ff

= 339.16 N

Thus, the static friction force when the mule exerts a force of 6.10 × 10² N on the sled at the same angle is 339.16 N.

To know more about static friction force visit:

https://brainly.com/question/33058097

#SPJ11

6. For a point P on latitude of 45°10'20" N and longitude of 70°00'00" W [using the GRS80 ellipsoid]. (20 points: 5 points each) a. What is the radius of curvature in the meridian for point P? b. What is the radius of curvature in the prime vertical for point P? c. What is the radius of curvature in 45o azimuth? d. What is the radius of curvature in the parallel of latitude for point P?

Answers

The radius of curvature in the parallel of latitude for point P is equal to Rn, which we calculated in part b. Therefore, the radius of curvature in the parallel of latitude for point P is approximately 6399436.733 meters.

Overall, the radius of curvature depends on the direction and location of the point on the Earth's surface.

a. The radius of curvature in the meridian for point P can be calculated using the formula:

Rm = a(1 - e) / (1 - e * sin^2φ)3/2

where a is the semi-major axis of the GRS80 ellipsoid and e is its eccentricity. For the GRS80 ellipsoid, a = 6378137.0 meters and e = 0.0818191908426215.

Plugging in the values, we get:

Rm = 6378137.0 * (1 - 0.0818191908426215^2) / (1 - 0.0818191908426215^2 * sin^2(45°10'20"))^3/2

Calculating this expression, we find that the radius of curvature in the meridian for point P is approximately 6399592.956 meters.

b. The radius of curvature in the prime vertical for point P can be calculated using the formula:

Rn = a / √(1 - e * sin^2φ)

where a is the semi-major axis of the GRS80 ellipsoid and e is its eccentricity. Plugging in the values, we get:
Rn = 6378137.0 / √(1 - 0.0818191908426215 * sin(45°10'20"))

Calculating this expression, we find that the radius of curvature in the prime vertical for point P is approximately 6399436.733 meters.

c. The radius of curvature in 45° azimuth for point P can be calculated using the formula:

Rh = Rm * cos(45°10'20")

Plugging in the values, we get:

Rh = 6399592.956 * cos(45°10'20")

Calculating this expression, we find that the radius of curvature in 45° azimuth for point P is approximately 4521232.935 meters.

d. The radius of curvature in the parallel of latitude for point P is equal to Rn, which we calculated in part b. Therefore, the radius of curvature in the parallel of latitude for point P is approximately 6399436.733 meters.

Overall, the radius of curvature depends on the direction and location of the point on the Earth's surface.

To know more about radius of curvature visit:

brainly.com/question/30106468

#SPJ11

One way to control avalanches is to send explosive charges to key areas on mountain slopes to trigger small avalanches before larger ones can build up. Norway, for instance, uses solar- powered launchers that fire pre-timed charges. Your launcher fires charges at an angle of 70 degrees from the horizontal and a speed of 200 m/s. If you fire a charge and it travels a horizontal distance of 300 m away from you, how high up the slope will it strike? 97 m 730 m 824 m 300 m 1030 m

Answers

The charge fired from the launcher will strike the slope at a height of approximately 97 m.

To determine the height, we can use the projectile motion equations. The horizontal distance traveled by the charge, 300 m, and the launch angle, 70 degrees, are given. We need to find the vertical distance or height.

The horizontal and vertical components of the projectile's initial velocity can be calculated as follows:

Horizontal component: Vx = velocity * cos(angle)

Vertical component: Vy = velocity * sin(angle)

Plugging in the values, we get:

Vx = 200 m/s * cos(70 degrees) ≈ 65.22 m/s

Vy = 200 m/s * sin(70 degrees) ≈ 184.81 m/s

Next, we can calculate the time taken for the charge to travel horizontally using the equation:

time = horizontal distance / horizontal velocity

Plugging in the values, we get:

time = 300 m / 65.22 m/s ≈ 4.59 s

Now, we can find the height reached by the charge using the equation for vertical displacement:

vertical displacement = vertical velocity * time + (1/2) * acceleration * time^2

Since the charge is in free-fall motion, the acceleration is approximately equal to the acceleration due to gravity (g = 9.8 m/s^2). Plugging in the values, we get:

vertical displacement = 184.81 m/s * 4.59 s + (1/2) * 9.8 m/s^2 * (4.59 s)^2 ≈ 412.09 m

Therefore, the charge will strike the slope at a height of approximately 97 m, calculated by subtracting the initial height of the launcher (300 m) from the vertical displacement (412.09 m).

To learn more about velocity, click here:

brainly.com/question/30559316

#SPJ11

A ball rolls off a platform that is 10 meters above the ground. The ball's horizontal velocity as it leaves the platform is 5 m/3. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Using the approximate value of g=10 m/s 2
. how much time does it take for the ball to hit the ground? The time taken by the ball to hit the ground is

Answers

The time taken by the ball to hit the ground is only one second.

To calculate the time it takes for the ball to hit the ground, we can consider the vertical motion of the ball. Given:

Initial vertical position (y0) = 10 meters

Acceleration due to gravity (g) = 10 m/s^2

We can use the equation for vertical motion:

y = y0 + v0y * t + (1/2) * g * t^2

Since the ball starts from rest vertically (v0y = 0), the equation simplifies to: y = y0 + (1/2) * g * t^2

Substituting the given values:

0 = 10 meters + (1/2) * 10 m/s^2 * t^2

Rearranging the equation:

5 meters = 5 m/s^2 * t^2

Dividing both sides by 5 m/s^2:

t^2 = 1

Taking the square root: t = 1 second

Therefore, it takes approximately 1 second for the ball to hit the ground.

To learn more about, vertical motion, click here, https://brainly.com/question/12640444

#SPJ11

A rock is thrown vertically upward from ground level at time t=0. At t=2.5 s it passes the top of a tall tower, and 1.0 s later it reaches its maximum height. What is the height of the tower?

Answers

Answer:

The height of the tower is approximately 85.75 meters.

Explanation:

To determine the height of the tower, we need to consider the motion of the rock at different time intervals.

Given:

The time when the rock passes the top of the tower (t₁) = 2.5 s

Time when the rock reaches its maximum height (t₂) = 2.5 s + 1.0 s = 3.5 s

At time t₁ = 2.5 s, the rock has reached the top of the tower, which means its vertical displacement at that point is equal to the height of the tower.

To find the height of the tower, we need to calculate the vertical displacement of the rock at t₁ = 2.5 s.

Using the equation for vertical displacement in free-fall motion:

Δy = v₀t + (1/2)at²

Since the rock is thrown vertically upward, its initial velocity (v₀) is positive, and acceleration (a) due to gravity is negative (-9.8 m/s²).

At t = 2.5 s:

Δy = v₀t + (1/2)at²

Δy = v₀(2.5) + (1/2)(-9.8)(2.5)²

Δy = 2.5v₀ - 12.25

We know that at t = 2.5 s, the vertical displacement is equal to the height of the tower, so:

Tower height = Δy = 2.5v₀ - 12.25

Now, to find v₀, the initial velocity of the rock, we can use the information provided that 1.0 seconds after passing the top of the tower, the rock reaches its maximum height.

At t = 3.5 s, the rock reaches its maximum height, so its final velocity (v) is 0 m/s.

Using the equation for final velocity in free-fall motion:

v = v₀ + at

0 = v₀ + (-9.8)(3.5)

v₀ = 34.3 m/s

Now, substitute the value of v₀ into the equation for the tower height:

Tower height = 2.5v₀ - 12.25

Tower height = 2.5(34.3) - 12.25

Tower height ≈ 85.75 m

Therefore, the height of the tower is approximately 85.75 meters.

Learn more about motion: https://brainly.com/question/26083484

#SPJ11

Please show work. Thank you! e with the branch, while the right string makes a \( 30^{\circ} \) angle. What is the tension in each string (in N)? 2 23 the \( x \)-direction? The \( y \)-direction? Can you use Newton's second law

Answers

The tension in each string can be found using Newton's second law and trigonometry. The tension in the left string is 23 N, and the tension in the right string is 40 N.

Let's analyze the forces acting on the object. We have the force of gravity acting downward with a magnitude of 40 N. The tension in the left string pulls to the right, and the tension in the right string pulls at an angle of 30 degrees above the horizontal.

In the x-direction, we can write the equation of motion:

[tex]\(T_L - T_R \cdot \cos(30^\circ) = 0\)[/tex]

where [tex]\(T_L\)[/tex] represents the tension in the left string and [tex]\(T_R\)[/tex] represents the tension in the right string.

In the y-direction, we can write the equation of motion:

[tex]\(T_R \cdot \sin(30^\circ) - 40\, \text{N} = 0\)[/tex]

Solving these two equations simultaneously, we can find the tensions in each string:

[tex]\(T_L = 23\, \text{N}\) (tension in the left string)[/tex]

[tex]\(T_R = 40\, \text{N}\) (tension in the right string)[/tex]

Therefore, the tension in the left string is 23 N, and the tension in the right string is 40 N.

Learn more about tension from the given link: https://brainly.com/question/25026730

#SPJ11

Describe in detail the mechanisms by which thermal energy is transferred (ie. know the mechanisms of heat loss)

Answers

Thermal energy can be transferred through three main mechanisms: conduction, convection, and radiation.

Let's explore each mechanism in detail:

Conduction: Conduction is the transfer of thermal energy through direct molecular contact. In a solid material, such as a metal rod, heat is transferred from hot regions to cooler regions by molecular vibrations. When the particles in the hot region vibrate vigorously, they collide with neighboring particles, transferring some of their energy. This process continues, creating a chain reaction that allows heat to flow through the material. Good conductors, such as metals, allow heat to transfer more efficiently because their particles are closely packed.Convection: Convection is the transfer of thermal energy through the movement of fluids (liquids or gases). It occurs due to differences in density caused by temperature variations. When a fluid is heated, it expands and becomes less dense. The warmer, less dense fluid rises, while the cooler, denser fluid sinks. This sets up a circulation pattern known as convection currents, which facilitate the transfer of heat. Convection is responsible for heat transfer in liquids and gases, such as the boiling of water or the circulation of warm air in a room.Radiation: Radiation is the transfer of thermal energy through electromagnetic waves. Unlike conduction and convection, radiation does not require a medium for transfer. All objects emit thermal radiation in the form of electromagnetic waves, primarily in the infrared range. Hotter objects emit more radiation, and the energy is transferred from the hotter object to cooler surroundings. This transfer can occur in a vacuum, making radiation the only mechanism for heat transfer in space. Examples of radiation include the heat we receive from the Sun or the warmth we feel standing near a fire.

It's important to note that heat transfer often occurs through a combination of these mechanisms. For example, when you hold a hot cup of coffee, heat is conducted from the cup to your hand, while convection occurs within the coffee as it circulates due to the temperature difference. At the same time, the cup radiates thermal energy, which can be felt as warmth. Understanding these mechanisms helps us comprehend how heat is transferred in various situations and allows for effective thermal mana.

Learn more about Thermal energy here:

https://brainly.com/question/31208401

#SPJ11

When a car's starter is in use, it draws a large current. The car's lights draw much less current. As a certain car is starting, the current through the battery is 59.4 A and the potential difference across the battery terminals is 9.45 V. When only the car's lights are used, the current through the battery is 2.04 A and the terminal potential difference is 11.3 V. Find the battery's emf. Find the internal resistance. 2- A certain resistor is made with a 51.0 m length of fine copper wire, 4.72 10-2 mm in diameter, wound onto a cylindrical form and having a fiber insulator separating the coils. Calculate the resistance. (The resistivity of copper is 1.72 10-8 Ω-m.)

Answers

1)The battery's emf is 9.45 V + (59.4 A)(R). 2)  the internal resistance of the battery is approximately 0.254 Ω. 3) The resistance of the copper wire is  1.26 Ω

The potential difference across the battery terminals and the current through the battery in two different scenarios. Let's denote the potential difference as V and the current as I.

1) When the car is starting:

Potential difference across the battery terminals (V) = 9.45 V

Current through the battery (I) = 59.4 A

Using the equation emf = V + IR, where R is the internal resistance, we can solve for emf:

emf = potential difference + internal resistance

emf = V + IR

emf = 9.45 V + (59.4 A)(R)

2) When only the car's lights are used:

Potential difference across the battery terminals (V) = 11.3 V

Current through the battery (I) = 2.04 A

Using the same equation, we can solve for emf:

emf = V + IR

emf = 11.3 V + (2.04 A)(R)

Now we have two equations with two unknowns (emf and R). We can solve these equations simultaneously to find the values.

Subtracting the second equation from the first equation, we get:

(9.45 V + 59.4 A * R) - (11.3 V + 2.04 A * R) = 0

Simplifying this equation, we have:

7.26 A * R = 1.85 V

Now we can solve for R:

R = 1.85 V / 7.26 A ≈ 0.254 Ω

So, the internal resistance of the battery is approximately 0.254 Ω.

3) To calculate the resistance of the copper wire, we can use the formula:

Resistance = resistivity * length / cross-sectional area

Length of wire (L) = 51.0 m

Diameter of wire (d) = 4.72 * 10^(-2) mm = 4.72 * 10^(-5) m

Resistivity of copper (ρ) = 1.72 * 10^(-8) Ω-m

We first need to calculate the cross-sectional area (A) of the wire:

Area = π * (d/2)^2

Substituting the values, we get:

Area = π * (4.72 * 10^(-5) m / 2)^2 ≈ 6.99 * 10^(-10) m^2

Now we can calculate the resistance:

Resistance = ρ * L / A

Resistance = (1.72 * 10^(-8) Ω-m) * (51.0 m) / (6.99 * 10^(-10) m^2)

Resistance ≈ 1.26 Ω

Learn more about resistance: brainly.com/question/29427458

#SPJ11

DJ Funk is standing between two speakers. Each speaker produces a note with a frequency of 200 Hz on a day when the speed of sound is 340 m/s. The person is 3.40 m from one speaker and 4.25 m from the other. What type of interference does the person perceive?

Answers

To determine the type of interference experienced by DJ Funk, we need to consider the relative phase difference between the sound waves coming from the two speakers.

The phase difference between two sound waves can be calculated using the formula:

Δφ = 2πΔx / λ

Δφ = Phase difference (in radians)

Δx = Path difference (the difference in distances from the person to each speaker)

λ = Wavelength

Δx = 4.25 m - 3.40 m = 0.85 m (path difference)

f = 200 Hz (frequency)

To find the wavelength (λ), we can use the formula:

v = fλ

v = Speed of sound

f = Frequency

λ = Wavelength

340 m/s = 200 Hz * λ

λ = 340 m/s / 200 Hz = 1.7 m

Δφ = 2π * 0.85 m / 1.7 m = π radians

A phase difference of π radians (180 degrees) corresponds to a half-wavelength phase shift. In this case, the path difference is equal to half a wavelength.

When the path difference between two sound waves is equal to half a wavelength, it results in destructive interference. Therefore, DJ Funk will perceive destructive interference between the sound waves coming from the two speakers.

Learn more about interference here : brainly.com/question/31857527
#SPJ11

A car moves along an east-west road so that its velocity varies with time as shown in the graph below, where east is the positive direction. For each part of this question, indicate which one or more time intervals is correct by entering the corresponding letter or letters. If more than one letter is correct, enter the letters of your answer in alphabetical order with no spaces in between. velocity_graph3 (a) During which one or more time intervals is the car speeding up? Choose all that apply. (b) During which one or more time intervals is the car moving with a constant speed? Choose all that apply. (c) During which one or more time intervals is the magnitude of the car's acceleration largest? Choose all that apply. (d) During which one or more time intervals is the car moving east? Choose all that apply

here is the graph

Answers

(a) The car is speeding up during time interval C.
When the velocity-time graph has a positive slope, it indicates that the car is speeding up. In the given graph, the slope is positive during time interval C.

(b) The car is moving with a constant speed during time intervals B and E.
When the velocity-time graph has a horizontal line, it indicates that the car is moving with a constant speed. In the given graph, the velocity is constant during time intervals B and E.

(c) The magnitude of the car's acceleration is largest during time interval D.
he magnitude of acceleration is represented by the slope of the velocity-time graph. The steeper the slope, the larger the magnitude of acceleration. In the given graph, the slope is steepest during time interval D.

(d) The car is moving east during time intervals B, C, and D.
The positive portion of the velocity-time graph indicates motion in the east direction. In the given graph, the car is moving east during time intervals B, C, and D.

learn more about velocity-time graph

https://brainly.com/question/28715702

#SPJ11

Two external forces act on a system, ⟨14,−18,21⟩N and ⟨19,−13,−11⟩N. What is the net force acting on the system?
F

net

= X N

Answers

The net force acting on the system is ⟨33, -31, 10⟩ N.

To find the net force acting on the system, we need to calculate the vector sum of the given external forces.

Given forces:

Force 1: ⟨14, -18, 21⟩ NForce 2: ⟨19, -13, -11⟩ N

To find the net force, we add the corresponding components of the forces:

Net force = ⟨14 + 19, -18 + (-13), 21 + (-11)⟩ N

Simplifying the vector addition, we get:

Net force = ⟨33, -31, 10⟩ N

Therefore, the net force acting on the system is ⟨33, -31, 10⟩ N. This means that the resultant force has a magnitude of 33 N in the positive x-direction, -31 N in the negative y-direction, and 10 N in the positive z-direction.

To learn more about net force, Visit:

https://brainly.com/question/14361879

#SPJ11


A 0.20-kg apple falls from a tree to the ground, 5.78 m below.
Ignore air resistance. Take ground level to be y=0. Determine the
speed of the apple, in meters per second, when it is 2.86 m above
the g

Answers

The speed of the apple when it is 2.86 m above the ground is 7.55 m/s.


Mass of apple, m = 0.20 kg; Acceleration due to gravity, g = 9.81 m/s²; Initial velocity, u = 0; Displacement, s = 2.86 m; Final velocity, v = ?

Using the equation of motion, we can find the final velocity of the apple:  

v² = u² + 2gs  

where g is the acceleration due to gravity, u is the initial velocity and s is the displacement.

Here, u = 0, g = 9.81 m/s² and s = 2.86 m.  

v² = 0² + 2 × 9.81 × 2.86
v² = 56.4036  

Taking the square root of both sides of the equation, we get:

v = 7.55 m/s

Therefore, the speed of the apple when it is 2.86 m above the ground is 7.55 m/s.

Learn more about acceleration here:

https://brainly.com/question/21775164

#SPJ11

Other Questions
which step in the army problem solving process uses brainstorming 14- Find Density of a cylinder with diameter of 6.0 cm and height of 14.0 cm and mass of 800.0 g ? 15- Knowing the distance between Earth and the Sun is 94.278 million miles, then find orbital speed of planet earth around the sun as we know it takes one year for one complete cycle. Find your answer by m/sec ? Come up with an estimator of based on X (n). Compute the standard error of your estimator. Is your estimator a random variable or a real number? Select the correct text in the passage.Which two parts of this excerpt from Incidents in the Life of a Slave Girl by Harriet Ann Jacobs express the view that even kind slaveholders regarded enslaved people as merely property? A Tornado Diagram can show:Select one:a. the probability distribution for the payoffs of a decisionb. whether one option shows stochastic dominance over anotherc. the factors that have the greatest influence on the payoffs of the decision What is the electrostatic force between two positive charges, one with \( \mathrm{q} 1=2.3 \times 10^{-9} \mathrm{C} \), and the other with \( \mathrm{q} 2=5.9 \times 10^{3} \mathrm{C} \), if the dist Bo can work a maximum of 60 hours in a week. He has the opportunity to work for $12 per hour and he has no unearned income. With the income that he earns from working he purchases cans of beans at a price of $1 per can. Assume that he is initially working 15 hours per week. Finally, assume that the goods are not perfect complements. a) Putting hours of leisure on the x-axis and cans of beans on the y-axis illustrate Bos budget set, his best bundle on his budget line and an indifference curve through that bundle.Plan A: The government introduces a cash assistance program for low income individuals. If anindividual has no earned income, then the government will pay that individual $240 for theweek. For each dollar that the individual earns, the government reduces that payment by $1. Forexample, if a person earns $40, the government payment would be reduced by $40 to $200. If theindividual earns more than $240 then he receives no payments from the government.b) In your diagram for part (a) illustrate Bos budget set after the introduction of thegovernments assistance plan. Your budget set will contain two "kink" points. You mustlabel the coordinates of both kink points.c) Explain why working 0 hours after the assistance plan is introduced is the best bundle onhis new budget line.Plan B: An alternative program would be for the government to give each individual $240 perweek as before, but to reduce the payments at a rate of only $0.50 per $1 earned. Thus, if anindividual earned $40 the payments would only be reduced by $20.d) In your diagram illustrate the budget line associated with Plan B. What bundles arecommon to this budget line and the original (no assistance) line?e) Is it possible that he will work a positive number of hours under Plan B? You can useyour diagram to explain your answer.f) Assuming that Bo works a positive number of hours, illustrate the cost to the governmentof Plan B. Which is cheaper for the government, Plan A or Plan B? Briefly explain. To test the acceleration of gravity on the moon and the impact of mass on the acceleration of gravity, astronauts dropped a feather and a hammer on the moon. Regardless of height, the feather and the hammer hit the surface at the same time in a vacuum. The gravity on the moon is 1.6 m/s? This same experiment was tested on the surface of Earth. If the feather and hammer were placed in a vacuum tube with no air resistance, which of the following statements would be true? A. The hammer and the feather will hit Earth at different times. B. The hammer and the feather will hit Earth in less time than they hit the moon. C. The hammer and the feather will fall at a slower rate on Earth than on the moon. D. The hammer and the feather will hit Earth at a slower speed than they hit the moon. From the article: "Americans are splurging on summer travel and entertainment, putting their money toward experiences outside of the homes where they spent the early years of the pandemic." Briefly explain why it could be a rational decision for an American household to spend on travel and entertainment rather than use the money that was spent for food or housing. [44-2] Exercise designed to employ CP as part of the wholeprocess:with the same argument below,[44-2.1] do the 1st proof by using CP with ~P as AP[44-2.2] do the 2nd proof by using CP with R as AP; & thenContraC: ~P -> ~R1: R -> (L & S)2: (L V M) -> P Question 5 of 30If the motion between a pair takes place in more than one direction, then this kind of motion is termed as_____O completely constrained motionO incompletely constrained motionO seccessfully constrained motion A ray of light passes from air through dense flint glass and then back into air. The angle of incidence on the first glass surface is 76.0. The thickness of the glass is 5.20 mm; its front and back surfaces are parallel. How far is the ray displaced as a result of traveling through the glass? Question 4 ( 3 points) A 0.17 kg baseball is thrown with a speed of 37 m/s and it is hit straight back to the pitcher with a speed of 59 m/s. What is the magnitude of the impulse exerted upon the bag by the bat? Your Answer: Answer units Upon successful completion of this unit, students will be able tocreate an environment that reviews ethical standards with the project team;assess the system of moral values that individual brings to the project and navigate if they conflict with their own ethics; andcommunicate to the project team the approach to be taken to resolve ethical dilemmas.DescriptionThis unit focuses on the importance of ethics in project leadership; looking at how ethical choices can impact project outcomes, minimize risks and increase trust.In each dilemma below, what would you do? Choose your response; then provide the rationale for your answer [Adapted from the text: The Art of Leadership by George Manning & Kent Curtis]Manning, G., & Curtis, K. (2004). The art of leadership. The TQM Magazine, 16(3), 225-226.-----------------------------------------------------------------------------------------------------------------------------------------------1. The citizen. You are driving your car when you come upon the scene of an accident. One person will die without immediate medical care. You take the victim and speed to the hospital. The extra speed causes another accident, in which another person dies. How should you be judged? Was your act right because your motive was good, or was your act wrong because its consequences were bad?Choose one:Right; motiveWrong; consequencesAlternative response was good were badMy Choice is:-----------------------------------------------------------------------------------------------------------------------------------------------Rationale2. The salesperson. You learn that your company is selling faulty equipment that could be dangerous. Your spouse needs medical treatment that costs a large percentage of your income. You have reason to believe that if you confront your employer, you will lose your job. What would you do?Choose one:ConfrontAvoidAlternative response employer confrontationMy Choice is:-----------------------------------------------------------------------------------------------------------------------------------------------Rationale3. The supervisor. Your company is reducing the workforce, and you must dismiss one of your engineers. You have narrowed the choices to T. J., an older employee who has been coasting for years, but who is capable of outstanding performance, and Morgan, a new employee who tries his best, but who almost certainly will never perform at the same level as T. J. Who would you let go?Choose one:T. J.MorganAlternative responseMy Choice is: The national Model Code of Educator Ethics (MCEE).The Association of American Educators Code of Ethics (professional association)what major points of focus do these national, state, and professional codes have in common? Provide at least five. Seneral conclusions allow us to make a holistic, overall assessment about he inferences we can make. Each general conclusion should (1) answer the esearch question, (2) supply evidence and justify how it supports your inswer with (a) a statement of certainty from an inference analysis and (b) a econd piece of evidence, and then (3) give an overall assessment of the onclusions that can be made based on study design and/or any next steps. n more detail: 1. Overall statement: - answer research question (topic sentence to conclusion) - NOTE: #1 and #2a will be distinct if the question is asking if a particular value is plausible. They will most likely blend together if the purpose from the research question is to just estimate the parameter. 2. Evaluate the evidence this is where you provide the evidence and justification to support your topic sentence. Aim for 12 sentences for 2a and 2b. 2a. Statement of certainty from inference: estimation 2a. Statement of certainty from inference: estimation - Interpret the confidence interval in context - Include all parts: sample caveat; confidence level; parameter of interest, in context; indication of single value; interval bounds, with units 2b. Second piece of evidence requires: - actual evidence cited - at the moment, the only other evidence you have is from EDA. - explanation of how that evidence supports inference (confidence interval) (or not). - just listing a statistic is not evidence of anything! Statistics vary, so we don't expect values to be exact. - using measures of center in addition to spread could be used as evidence to discuss the amount of difference between your point estimate and a particular value being evaluated - Discussing the actual distribution of cases tends to be the most reliable and convincing evidence. 3. Overall conclusion: - includes consideration of overall study design and any next steps - considerations: can we determine causality? can we generalize? were error rates controlled? can we trust the results? was our estimates precise enough? - include evidence and justification for any evaluation Scenario: A researcher is interested in studying carbon dioxide uptake in a species of grass (Echinochloa crus-galli) grown in Quebec. The researcher is interested in knowing if the population mean carbon dioxide uptake in E. crus-galli is less in Quebec than 35umol/m 2sec. After measured 42 randomly sampled plants, the researcher found a mean uptake up 33.54 and a standard deviation of 9.67umol/m 2sec. The boxplot and descriptive statistics are below. The calculated 95% confidence interval is (30.5283, 36.5574). What can you conclude, generally, about the carbon uptake of grass in Quebec? A study was conducted to determine if there is a relationship between a person's blood type and stomach cancer. From a sample of 124 participants with stomach cancer, 10 of them had a A blood type, 30 had a B blood type and 64 had an AB blood type. What is the probability that a randomly selected participant has an A or AB blood type? With reference to relevant literature and/or recent accounting fraud case(s), critically discuss the phenomenon of earnings management and whether earnings management is good or bad. Identify what the groups of government programs that assist the poor are called and provide examples of the prominent programs that are provided in the U.S. in musical form, which form achieves symmetry and balance through the return of material (or melodies)?