An 18 nc charae is placed on the x-3xis at ×1.6 m, and a −32 nC charge is placed at x4.8 m. What is the magnitude of the electric field in the source? Give your aniswer to one decimal place.

Answers

Answer 1

The magnitude of electric field in the source is 1.27 × 10⁵ N/C.

The value of electric field magnitude in the source.

An 18 nC charge is placed on the x-3xis at ×1.6 m, and a −32 nC charge is placed at x4.8 m.

We are required to determine the magnitude of the electric field in the source.

An electric field is a vector quantity with magnitude given by the product of the point charge creating the field and the electric field constant, divided by the square of the distance from the point charge to the location of the test charge.

The direction of the field is the direction of the force on a positive test charge.

To find the magnitude of electric field at the location of charge +18 nC, we will use the formula for electric field.

E = k × Q/r² Where,

k = Coulomb's constant = 9 × 10⁹ Nm²/C²

Q = Charge producing the field in Coulombs.

r = Distance between the source charge and

the location of the test charge = (4.8 - 1.6) m = 3.2 m

Putting the given values in the formula:

E = 9 × 10⁹ × 18 × 10⁻⁹/ (3.2)²

E = 1.27 × 10⁵ N/C

Learn more about electric field from the given link:

https://brainly.com/question/19878202

#SPJ11


Related Questions

A 500g meter stick has a 2kg mass stuck to the end of it so that the center of the 2kg mass is at the end of the stick as shown. How far from the left end of the meter stick is the center of mass of this system in centimeters?
Hint: How far from one end is the center of mass of a meter stick?

Answers

The center of mass of this system is 1.1 meters from the left end of the meter stick. Since there are 100 centimeters in a meter, the center of mass is 110 centimeters from the left end.

The center of mass of a uniform meter stick is located at its midpoint. since a 2 kg mass is stuck to the end of the meter stick, the center of mass of the system will be shifted towards the end with the 2 kg mass.

Mass of the meter stick (m₁) = 500 g = 0.5 kg

Mass stuck to the end (m₂) = 2 kg

the position of the center of mass (x) of the system, we can use the formula:

x = (m₁ * d₁ + m₂ * d₂) / (m₁ + m₂)

where d₁ is the distance from the left end of the meter stick to its center of mass, and d₂ is the distance from the left end to the center of mass of the 2 kg mass (which is the length of the meter stick).

Since the center of mass of the meter stick is at its midpoint, we know that d₁ = 0.5 m.

Substituting the values into the formula, we have:

x = (0.5 kg * 0.5 m + 2 kg * 1 m) / (0.5 kg + 2 kg)

x = (0.25 kg + 2 kg) / 2.5 kg

x ≈ 1.1 m

To know more about center of mass refer here

https://brainly.com/question/27549055#

#SPJ11

Find the Normal force and the acceleration experienced by a block of 6 kg being pulled by a force of 25 N at an angle of 30

with the floor

Answers

The normal force experienced by the block is approximately 46.3 N, and the acceleration of the block is approximately 3.61 m/s².

To find the normal force and the acceleration experienced by the block, we need to consider the forces acting on the block. Let's break down the forces involved:

Force of gravity (weight):

The force of gravity acting on the block can be calculated using the formula: weight = mass * gravity.

Given the mass of the block is 6 kg and the acceleration due to gravity is approximately 9.8 m/s², the weight of the block is: weight = 6 kg * 9.8 m/s² = 58.8 N.

Vertical component of the applied force:

The applied force is at an angle of 30 degrees with the floor. We need to find the vertical component of the applied force, which contributes to the normal force. The vertical component can be calculated as: vertical force = applied force * sin(angle).

Given the applied force is 25 N and the angle is 30 degrees, the vertical component of the applied force is: vertical force = 25 N * sin(30°).

Normal force:

The normal force is the perpendicular force exerted by the floor on the block, which counteracts the vertical force due to the applied force. The normal force can be calculated as: normal force = weight - vertical force.

Horizontal component of the applied force:

The applied force also has a horizontal component, which contributes to the acceleration of the block. The horizontal component can be calculated as: horizontal force = applied force * cos(angle).

Given the applied force is 25 N and the angle is 30 degrees, the horizontal component of the applied force is: horizontal force = 25 N * cos(30°).

Frictional force:

If there is no mention of friction, we can assume a frictionless scenario, and therefore, there is no frictional force.

Acceleration:

Using Newton's second law of motion, we can relate the net force acting on the block to its acceleration: net force = mass * acceleration.

The net force can be calculated as: net force = horizontal force.

Given the mass of the block is 6 kg, we have: horizontal force = 6 kg * acceleration.

Now, let's calculate the values:

Calculating the vertical component of the applied force:

vertical force = 25 N * sin(30°) ≈ 12.5 N

Calculating the normal force:

normal force = weight - vertical force

normal force = 58.8 N - 12.5 N ≈ 46.3 N

Calculating the horizontal component of the applied force:

horizontal force = 25 N * cos(30°) ≈ 21.65 N

Calculating the acceleration:

horizontal force = 6 kg * acceleration

21.65 N = 6 kg * acceleration

acceleration = 21.65 N / 6 kg ≈ 3.61 m/s²

To know more about acceleration

brainly.com/question/28743430

#SPJ11

Light of wavelength 630 nm falls on two slits and produces an Part A interference pattern in which the third-order bright fringe is 40 mm from the central fringe on a screen 3.0 m away. What is the separation of the two slits? Express your answer using two significant figures. X Incorrect; Try Again; 4 attempts remaining

Answers

The separation of the two slits is 0.0158 mm (approx).

Given,Light of wavelength 630 nm falls on two slits and produces an interference pattern in which the third-order bright fringe is 40 mm from the central fringe on a screen 3.0 m away.Concept used,The formula for calculating the separation between the two slits is given by: dsinθ = m λ where, m = 1,2,3,...θ = angle of diffractiond = separation between the slitsλ = wavelength of the lightThe path difference between the waves of light emerging from two slits is given by: d sinθ = mλ where, d = separation between the slitsλ = wavelength of lightθ = angle of diffraction.The third order fringe means m = 3. Hence, d sinθ = 3λHere, λ = 630 nm = 6.3 × 10⁻⁷ m. Therefore,3d sinθ = 6.3 × 10⁻⁷ ...................(1)

We know that angle of diffraction, θ can be given by, θ = tan⁻¹(y/L) where y is the fringe width and L is the distance between the screen and the slits. Here, y = 40 mm = 0.04 mL = 3.0 m Therefore, θ = tan⁻¹ (0.04/3)Now, substitute this value of θ in equation (1), we get:3d × (0.04/3) = 6.3 × 10⁻⁷Or, d = (6.3 × 10⁻⁷ )/0.04The value of d is, d = 1.58 × 10⁻⁵ m or 0.0158 mm (approx).Hence, the separation of the two slits is 0.0158 mm (approx).

learn more about diffraction -

https://brainly.com/question/8645206?utm_source=android&utm_medium=share&utm_campaign=question

#SPJ11

A heavy block, labeled " A ", is sitting on a table. On top of that block is a lighter block, labeled "B" as shown in the figure at the right. For the first parts of this problem you are asked to identify the direction of forces in this system under various circumstances. The labels in the subscripts indicate: A= block A,B= block B,F= finger, T= table. Specify the direction in your answers using the following notation: - R means points to the right - Lmeans points to the left - U means point up - D means points down - O indicates there is no such force at the instant specified 1. You start pushing on block A as shown, but it is too heavy and does not move. While you are pushing on block A but while it is not moving, specify the direction of the following normal ( N ) and frictional (f) forces between the various objects indicated. (a) N
A→B

(b) f
Y→A

(c) f
A→B

(d) N
F→A

(e) f
t→A

(f) N
0→A

2. Now you push a little harder and the block begins to move. Block B moves with it without slipping. While the blocks are speeding up, specify the direction of the following forces between the various objects indicated. (a) N
i→h

(b) f
T→A

(c) f
A→B

(d) N
f→A

(e) f
t→A

(f) N
0→A

3. Now you push so that the blocks move at a constant velocity. Block B moves with A without slipping. While the blocks are moving at a constant speed specify the direction of the following forces between the various objects indicated. (a) N
A→B

(b) f
T→A

(c) f
A→B

(d) N
f→A

(e) f
B−A

(f) N
B→A

Answers

In the given system of blocks (A and B) placed on a table, the directions of normal and frictional forces are determined for both motion and rest situations below:

1. (a) N A→B - Normal force will be pointing down from block A to block B, which is the reaction force to the weight of block B exerted on A. (b) f Y→A - Frictional force will be pointing to the left and it is between the surface of the table and blocks A, which opposes the direction of motion. (c) f A→B - Frictional force will be pointing to the right and it is between the surface of block A and block B, which opposes the direction of motion. (d) N F→A - Normal force will be pointing up from the table to block A, which is the reaction force to the weight of block A exerted on the table. (e) f t→A - Frictional force will be pointing to the right and it is between the surface of the table and block A, which opposes the direction of motion. (f) N 0→A - No force acting in the upward direction on block A.2. (a) N i→h - Normal force will be pointing up from the table to block A, which is the reaction force to the weight of block A exerted on the table. (b) f T→A - Frictional force will be pointing to the left and it is between the surface of the table and block A, which opposes the direction of motion. (c) f A→B - Frictional force will be pointing to the right and it is between the surface of block A and block B, which opposes the direction of motion. (d) N f→A - Normal force will be pointing up from the table to block A, which is the reaction force to the weight of block A exerted on the table. (e) f t→A - Frictional force will be pointing to the left and it is between the surface of the table and block A, which opposes the direction of motion. (f) N 0→A - No force acting in the upward direction on block A.3. (a) N A→B - Normal force will be pointing down from block A to block B, which is the reaction force to the weight of block B exerted on A. (b) f T→A - Frictional force will be pointing to the left and it is between the surface of the table and blocks A, which opposes the direction of motion. (c) f A→B - Frictional force will be pointing to the right and it is between the surface of block A and block B, which opposes the direction of motion. (d) N f→A - Normal force will be pointing up from the table to block A, which is the reaction force to the weight of block A exerted on the table. (e) f B−A - Frictional force will be pointing to the left and it is between the surface of block B and block A, which opposes the direction of motion. (f) N B→A - Normal force will be pointing up from block B to block A, which is the reaction force to the weight of block B exerted on block A. Thus, the directions of normal and frictional forces in the given system of blocks (A and B) placed on a table are identified while in motion and at rest.

For more questions on frictional forces

https://brainly.com/question/24386803

#SPJ8

Relative Velocity Sidewalk moves with a steady velocity of 1.1 km/h. How long (in s ) does it take for the passenger to get from one end of the sidewalk to the other, that i to cover the 100 m ? Tries 0/10 How much time does the passenger save by taking the moving sidewalk instead of just walking beside it? Tries 0/10 Through what distance does the passenger walk relative to the moving sidewalk? Tries 0/10 If the passenger's stride is 85 cm, how many steps are taken in going from one end of the moving sidewalk to the other? Tries 0/10

Answers

In this scenario of relative velocity, the passenger takes 32.73 seconds to traverse the 100 m distance on the moving sidewalk. By utilizing the sidewalk, the passenger saves 23.84 seconds compared to walking beside it. The passenger walks a distance of 30.92 m relative to the moving sidewalk, and completes this journey in approximately 118 steps, given their stride length of 85 cm. This analysis demonstrates the application of kinematic equations and concepts of relative motion in physics.

Relative Velocity

A passenger walks on a moving sidewalk with a constant speed of 1.1 km/h. The following is required to find:

How long (in seconds) does it take for the passenger to get from one end of the sidewalk to the other, i.e., to cover the 100 m?

The time it will take for the passenger to get from one end of the sidewalk to the other is given as follows:

Velocity = Distance / Time

1.1 km/h = 100 m / Time

Time = 100 / (1.1 × 1000 / 3600)

Time = 32.73 s

Therefore, it will take the passenger 32.73 seconds to get from one end of the sidewalk to the other.

How much time does the passenger save by taking the moving sidewalk instead of just walking beside it?

The velocity of the moving sidewalk is 1.1 km/h. Therefore, if the passenger walks beside it, his velocity will be 4.5 km/h. Let's calculate the time it would take for the passenger to travel 100 m at this velocity.

Velocity = Distance / Time

4.5 km/h = 100 m / Time

Time = 100 / (4.5 × 1000 / 3600)

Time = 8.89 s

The time it will take for the passenger to travel 100 m if he walks beside the moving sidewalk is 8.89 s. Therefore, he saves:

Time Saved = Time Walking - Time on Moving Sidewalk

Time Saved = 32.73 - 8.89

Time Saved = 23.84 s

Therefore, the passenger saves 23.84 seconds by taking the moving sidewalk instead of just walking beside it.

Through what distance does the passenger walk relative to the moving sidewalk?

The velocity of the passenger is 4.5 km/h, while the velocity of the moving sidewalk is 1.1 km/h. Therefore, the velocity of the passenger relative to the moving sidewalk is given as follows:

Relative Velocity = Velocity of Passenger - Velocity of Sidewalk

Relative Velocity = 4.5 - 1.1

Relative Velocity = 3.4 km/h = 0.944 m/s

The distance covered by the passenger relative to the moving sidewalk is given as follows:

Distance = Velocity × Time

Distance = 0.944 m/s × 32.73 s

Distance = 30.92 m

Therefore, the passenger walks a distance of 30.92 m relative to the moving sidewalk.

If the passenger's stride is 85 cm, how many steps are taken in going from one end of the moving sidewalk to the other?

The distance that the passenger walks is 100 m, and his stride length is 85 cm or 0.85 m. Therefore, the number of steps he takes is given as follows:

Number of Steps = Distance Walked / Stride Length

Number of Steps = 100 / 0.85

Number of Steps = 117.64 ≈ 118

Therefore, the passenger takes 118 steps while going from one end of the moving sidewalk to the other.

Learn more about relative velocity

https://brainly.com/question/29655726

#SPJ11

A ball thrown straight up with an initial velocity of +12 m/s. Find its position, velocity, and acceleration at (A) 1.0 s, (B) the maximum height, (C) 2.0 s, and (D) the moment right before it is caught at the same height it was thrown from. d=v
u

t+0.5gt
2
Vf=v
a

+gt where g=−10 m/s/s 13. For the ball in the previous problem, how much time does it take to reach the maximum height? 14. Make a table of the velocities of an object at the end of each second for the first 5 s of free-fall from rest. Assume in this problem that down is the positive direction. Therefore your velocities will all be positive. a. Use the data in your table to plot a velocity time graph below in the grid shown. b. What does the total area under the curve represent? 12. A ball thrown straight up with an initial velocity of +12 m/s. Find its position, velocity, and acceleration at (A) 1.0 s, (B) the maximum height, (C) 2.0 s, and (D) the moment right before it is caught at the same height it was thrown from. d=v
u

t+0.5gt
2
Vf=v
a

+gt where g=−10 m/s/s 13. For the ball in the previous problem, how much time does it take to reach the maximum height? 14. Make a table of the velocities of an object at the end of each second for the first 5 s of free-fall from rest. Assume in this problem that down is the positive direction. Therefore your velocities will all be positive. a. Use the data in your table to plot a velocity time graph below in the grid shown. b. What does the total area under the curve represent?

Answers

A ball is thrown straight upwards with an initial velocity of +12 m/s. The velocity, position, and acceleration at different times can be calculated as shown below: At time, t = 1 s, v = u + at= 12 - 10(1) = 2 m/s

A ball is thrown straight upwards with an initial velocity of +12 m/s. The velocity, position, and acceleration at different times can be calculated as shown below: At time, t = 1 s, v = u + at= 12 - 10(1) = 2 m/s

The final velocity,[tex]v_f = v_i[/tex] + at= 12 - 10(1) = 2 m/s

The displacement, s = [tex]v_i[/tex]* t + (1/2) * a * t²= 12(1) + (1/2)(-10)(1)²= 7 m

At the maximum height, v = 0. Therefore, t = [tex]v_f[/tex]/g= 2/-10= 0.2 s

The displacement, s = [tex]v_i[/tex]* t + (1/2) * a * t²= 12(0.2) + (1/2)(-10)(0.2)²= 1.2 m

At time, t = 2 s, v = [tex]v_i[/tex]+ at= 12 - 10(2) = -8 m/s

The final velocity, [tex]v_f = v_i[/tex] + at= 12 - 10(2) = -8 m/s

The displacement, s = [tex]v_i[/tex] * t + (1/2) * a * t²= 12(2) + (1/2)(-10)(2)²= 2 m

At the moment right before it is caught at the same height, v = 0. Therefore, t = [tex]v_f[/tex] /g= -12/-10= 1.2 s

The displacement, s = [tex]v_i[/tex] * t + (1/2) * a * t²= 12(1.2) + (1/2)(-10)(1.2)²= 7.2 m

The velocity of the object at the end of each second for the first 5 s of free-fall from rest can be calculated as shown below: Time, t (s)Velocity, v (m/s)10+0=001+(-10)=9-19+(-10)=8-27+(-10)=7-35+(-10)=6

a) The velocity-time graph is shown below: b) The total area under the curve represents the displacement of the object.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

The thin plastic rod shown in the figure has length L=11.0 cm and a nonuniform linear charge density λ=cx,wherec=40.6pC/m
2
. Nith V=0 at infinity, find the electric potential at point P
1

on the axis, at distance d=4.10 cm from one end.

Answers

The electric potential at point P₁, located at a distance of 4.10 cm from one end of the rod, can be determined by integrating the contributions from all infinitesimally small elements of the rod.

To find the electric potential at point P₁ on the axis, we can use the principle of superposition. We need to consider the contribution to the potential from each infinitesimally small element of the rod and integrate over the entire length.

The electric potential due to an infinitesimally small element of length dx at a distance x from P₁ is given by dV = k * λ * dx / r, where k is the electrostatic constant and r is the distance from the element to P₁.

The linear charge density λ = cx, where c = 40.6 pC/m². Therefore, λ = 0.406x nC/m².

The distance from the element to P₁ is r = sqrt(x² + d²), where d = 4.10 cm = 0.041 m.

The electric potential at P₁ is obtained by integrating the contributions from all the elements:

V = ∫(k * λ * dx / r) from x = 0 to x = L.

V = ∫(k * 0.406x * dx / sqrt(x² + d²)) from x = 0 to x = L.

Solving this integral will give us the electric potential at point P₁.

To know more about electric potential:

https://brainly.com/question/28444459


#SPJ11

ignore the friction force, and determine the acceleration of the barge when each donkey exerts a forme of 408 N on a cable. m/s
2

Answers

The acceleration of the barge is directly proportional to the net force and inversely proportional to the mass. The acceleration of the barge is

816 N / m, where m is the mass of the barge.

The net force on the barge is equal to the force exerted by each donkey, so the net force is 2 * 408 N = 816 N.

The mass of the barge is not given, so we can't calculate the acceleration directly. However, we can say that the acceleration is directly proportional to the net force and inversely proportional to the mass.

If we let the acceleration be represented by the variable a, we can write the following equation:

a = 816 N / m

where m is the mass of the barge.

We can't solve this equation for m, but we can say that the acceleration of the barge is 816 N / m.

In other words, the acceleration of the barge depends on the mass of the barge. If the mass of the barge is larger, the acceleration will be smaller. If the mass of the barge is smaller, the acceleration will be larger.

To learn more about acceleration: https://brainly.com/question/980919

#SPJ11

A charged particle beam (shot horizontally) moves into a region where there is a constant magnetic field of magnitude 0.00343 T that points straight down. The charged particles in the beam move in a circular path of radius 3.15 cm. If the charged particles in the beam were accelerated through a potential difference of 144 V, determine the charge to mass ratio of the charged particles in the beam. Answer in units of C/kg. 00610.0 points A simple mass spectrometer consists of an accelerating electric potential (so that ions of different mass have different velocities) and a uniform magnetic field (so that different velocity ions have different radii paths). This mass spectrometer is analyzing a beam of singly ionized unknown atoms using the following settings: - the magnetic field is 0.152 T; - the charge of an atom is 1.60218×10
−19
C; - the radius of the orbit is 0.0863 m; and - the potential difference is 179 V. Calculate the mass of the unknown atom. Answer in units of kg

Answers

The mass of the unknown atom is 4.65 x 10⁻²³ kg.

The equation for the motion of a charged particle in a magnetic field is given by the equation,

F = Bqv

where:

F = force experienced by the charged particle,

B = magnetic field strength,

q = charge on the particle,

v = velocity of the particle perpendicular to the magnetic field,

r = radius of curvature of the path of the particle, and

m = mass of the charged particle

The beam of charged particles moves in a circular path of radius r = 3.15 cm.

Thus the equation for the radius of the path can be given by,

mv²/r = Bqv

The potential difference of 144 V accelerates the charged particles, which gives them an initial kinetic energy of 144 eV. This can be written as the product of the charge and potential difference,

KE = eΔV

where:

e = charge of an electron and ΔV = potential difference

Thus,

KE = (1.602 x 10⁻¹⁹ C)(144 V)KE = 2.3 x 10⁻¹⁶ Joules

Using the equation of conservation of energy,1/2mv² = eΔVand substituting the value of the velocity of the charged particle from this equation into the first equation, the charge to mass ratio of the charged particles in the beam can be found.

mv²/r = Bqv

Where,

m/e = v/(Br)Charge to mass ratio of the charged particles in the beam can be given by,

e/m = Br²/v

Substitute the given values in the above equation,0.00343 T × (0.0315 m)² = (1.602 x 10⁻¹⁹ C)/(e/m)

Thus,

e/m = 1.7589 x 10¹¹ C/kg

Now, for the second question, the mass of the unknown atom can be found using the equation,

m/e = B²r²/2V

Where,

m = mass of the unknown atom,

e = charge of the unknown atom,

B = magnetic field strength,

r = radius of the path of the unknown atom

V = potential difference

The charge of an atom is 1.60218 x 10⁻¹⁹ C, and the magnetic field is 0.152 T.

The radius of the orbit is 0.0863 m, and the potential difference is 179 V. Substituting these values in the above equation,

m/e = (0.152² x 0.0863²)/(2 x 179)

Thus,

m/e = 2.902 x 10⁻⁴ kg/C

The mass of the unknown atom can be calculated using,

m = e(m/e)

Substituting the known values,

m = (1.602 x 10⁻¹⁹ C)(2.902 x 10⁻⁴ kg/C)

Thus,

m = 4.65 x 10⁻²³ kg

Therefore, the mass of the unknown atom is 4.65 x 10⁻²³ kg.

learn more about mass in the link:

https://brainly.com/question/28180102

#SPJ11

Suppose that the radius of a disk R=25 cm, and the total charge distributed uniformly all over the disk is Q=8.0×10−6C. Use the exact result to calculate the electric field 1 mm from the center of the disk. N/C Use the exact result to calculate the electric field 3 mm from the center of the disk. N/C Does the field decrease significantly? Yes No

Answers

Given that radius of the disk, R = 25 cmTotal charge distributed uniformly all over the disk, Q = 8.0 × 10⁻⁶ C We need to calculate the electric field 1 mm from the center of the disk and 3 mm from the center of the disk.

The formula to calculate the electric field due to a disk is, E = σ/2ε₀ [1 - (z/√(z² + R²))]Where, σ is the surface charge density, ε₀ is the permittivity of free space, and z is the perpendicular distance from the center of the disk. The surface charge density, σ = Q/πR² = (8 × 10⁻⁶ C)/(π × (25 × 10⁻² m)²) = 2.03 × 10⁻⁷ C/m²Electric field 1 mm from the center of the disk, z = 1 mm = 0.001 m E₁ = (2.03 × 10⁻⁷)/(2 × 8.85 × 10⁻¹²) [1 - (0.001/√(0.001² + 0.25²))] = 6.52 × 10⁴ N/C Electric field 3 mm from the center of the disk, z = 3 mm = 0.003 m E₂ = (2.03 × 10⁻⁷)/(2 × 8.85 × 10⁻¹²) [1 - (0.003/√(0.003² + 0.25²))] = 2.33 × 10⁴ N/C Electric field decreases from 6.52 × 10⁴ N/C to 2.33 × 10⁴ N/C when the distance increases from 1 mm to 3 mm. Therefore, the field decreases significantly.

When the radius of a disk R=25 cm, and the total charge distributed uniformly all over the disk is Q=8.0×10−6C, the electric field at a distance of 1 mm from the center of the disk is 6.52 × 10⁴ N/C and the electric field at a distance of 3 mm from the center of the disk is 2.33 × 10⁴ N/C. The electric field decreases significantly when the distance increases from 1 mm to 3 mm. Therefore, the field decreases significantly.

To know more about density, visit:

https://brainly.com/question/31237897

#SPJ11

The impulse response of an LTI filter is given by h(t)=2e
−2t
u(t). (a) Determine the unit step response for this filter, that is find s(t) as the output of the filter when the input is u(t). (b) Determine the output, y(t), of the filter for an input x(t)=u(t+1)−u(t−3).

Answers

a. The unit step response s(t) for this filter is: s(t) = -e^(-2t) + 1, for t ≥ 0

b. The output y(t) of the filter for the input x(t) = u(t+1) - u(t-3) is:
y(t) = -e^(-2(t-1)) + 1 - (-e^(-2(t-3)) + 1), for t ≥ 0.

The impulse response of an LTI (Linear Time-Invariant) filter is given by h(t) = 2e^(-2t) u(t), where u(t) is the unit step function.

(a) To determine the unit step response for this filter, we need to convolve the impulse response h(t) with the unit step function u(t). The convolution operation is denoted by *, and it is defined as:
s(t) = h(t) * u(t)
In this case, h(t) = 2e^(-2t) u(t) and u(t) = u(t), so the convolution becomes:
s(t) = (2e^(-2t) u(t)) * u(t)
To perform the convolution, we need to integrate the product of h(t) and u(t) over the range from 0 to t:
s(t) = ∫[0,t] (2e^(-2τ) u(τ)) dτ
The unit step function u(τ) is 1 for τ >= 0 and 0 for τ < 0. Therefore, we can simplify the integral by considering two cases:

1. For 0 ≤ τ ≤ t:
  s(t) = ∫[0,t] (2e^(-2τ)) dτ
       = -e^(-2τ) | [0,t]
       = -e^(-2t) + 1
2. For τ > t:
  s(t) = ∫[0,t] (2e^(-2τ) u(τ)) dτ + ∫[t,∞] (2e^(-2τ) u(τ)) dτ
       = ∫[0,t] (2e^(-2τ)) dτ + ∫[t,∞] 0 dτ
       = -e^(-2τ) | [0,t] + 0
       = -e^(-2t) + 1
Therefore, the unit step response s(t) for this filter is:
s(t) = -e^(-2t) + 1, for t ≥ 0

(b) To determine the output y(t) of the filter for the input x(t) = u(t+1) - u(t-3), we need to convolve the input signal x(t) with the impulse response h(t):
y(t) = x(t) * h(t)
Substituting the given values of x(t) and h(t) into the convolution equation, we have:
y(t) = (u(t+1) - u(t-3)) * (2e^(-2t) u(t))
Expanding the convolution and simplifying, we can split the integral into two parts:
y(t) = ∫[0,t] (2e^(-2τ) u(t+1-τ)) dτ - ∫[0,t] (2e^(-2τ) u(t-3-τ)) dτ
Considering two cases again:
1. For 0 ≤ τ ≤ t-1:
  y(t) = ∫[0,t-1] (2e^(-2τ)) dτ
       = -e^(-2τ) | [0,t-1]
       = -e^(-2(t-1)) + 1
2. For 0 ≤ τ ≤ t-3:
  y(t) = ∫[0,t-3] (2e^(-2τ)) dτ
       = -e^(-2τ) | [0,t-3]
       = -e^(-2(t-3)) + 1
Therefore, the output y(t) of the filter for the input x(t) = u(t+1) - u(t-3) is:
y(t) = -e^(-2(t-1)) + 1 - (-e^(-2(t-3)) + 1), for t ≥ 0.

To know more about impulse, visit:

https://brainly.com/question/30466819

#SPJ11

A car is travelling at 100 km/hr to the right and slows down to 65 km/hr in 10 seconds. What is the acceleration? How far does it travel in those 10 seconds?

Answers

The acceleration of the car is calculated to be -9.72 m/s². And the car travels a distance of 229.2 meters in those 10 seconds.

To calculate the acceleration, we use the formula:

acceleration = (change in velocity) / (change in time).

The change in velocity is the final velocity minus the initial velocity:

change in velocity = 65 km/hr - 100 km/hr = -35 km/hr.

The change in time is given as 10 seconds.

Plugging these values into the formula, we have:

acceleration = (-35 km/hr) / (10 s).

To convert km/hr to m/s, we divide by 3.6:

acceleration = (-35 km/hr) / (10 s) × (1 km / 3600 s) = -9.72 m/s².

Therefore, the acceleration of the car is -9.72 m/s².

To find the distance traveled, we use the formula:

distance = average velocity × time.

The average velocity is the sum of the initial and final velocities divided by 2:

average velocity = (100 km/hr + 65 km/hr) / 2 = 82.5 km/hr.

Converting km/hr to m/s, we divide by 3.6:

average velocity = 82.5 km/hr × (1 km / 3600 s) = 22.92 m/s.

Plugging in the values, we have:

distance = 22.92 m/s × 10 s = 229.2 meters.

Therefore, the car travels a distance of 229.2 meters in those 10 seconds.

To learn more about acceleration  click here

brainly.com/question/30660316

#SPJ11




(8\%) Problem 7: Suppose you wanted to store \( 3 \mu \mathrm{C} \) of charge in a capacitor across a voltage of \( 120 \mathrm{~V} \). ( What capacitance is needed in \( \mathrm{nF} \) ? \[ C= \]

Answers

The value of the capacitance needed is determined as 25 nF.

What is the capacitance needed?

If you wanted to store 3μC of charge in a capacitor across a voltage of 120 V, the value of the capacitance needed is calculated by applying the following formula.

C = Q/V

where;

Q is the chargeV is the voltage suppliedC is the capacitance

C = ( 3 x 10⁻⁶  C) / ( 120 V )

C = 2.5 x 10⁻⁸ F

C = 25 x 10⁻⁹ F

C = 25 nF

Thus, the value of the capacitance needed is determined as 25 nF.

Learn more about capacitance here: https://brainly.com/question/13578522

#SPJ4

A 10 pole, three phase alternator has 60 slots. Each coil spans 5 slots. If the winding used is half-coil calculate the number of coils per phase.

Answers

For a 10-pole, three-phase alternator with 60 slots, each coil spanning 5 slots, and a half-coil winding, there are 12 coils per phase.

The number of coils per phase in a three-phase alternator can be calculated by considering the number of poles and the number of slots. In this case, we have a 10-pole alternator with 60 slots. Each coil spans 5 slots, and the winding used is half-coil.
To calculate the number of coils per phase, we can use the formula:
Number of coils per phase = (Number of slots) / (Number of slots spanned by each coil)
Given that each coil spans 5 slots, we can substitute this value into the formula:
Number of coils per phase = 60 / 5
Simplifying the equation:
Number of coils per phase = 12
Therefore, there are 12 coils per phase in this three-phase alternator.
To know more about Number of coils, visit:

https://brainly.com/question/12000388

#SPJ11

"Three forces are applied to an object with a mass of 2 kg. These
are the only forces acting on the object. F1 has a magnitude of 6N
and points directly to the left. F2 has a magnitude of 5N and
points"

Answers

The net force acting on the object is 1 N to the left.

Three forces are applied to an object with a mass of 2 kg. These are the only forces acting on the object. F1 has a magnitude of 6N and points directly to the left. F2 has a magnitude of 5N and points directly upwards. F3 has a magnitude of 4N and points directly downwards.

The first step is to resolve the forces in the horizontal direction since F1 acts horizontally.

Using Pythagoras theorem, we can find that the horizontal component of F2 and the horizontal component of F3 are equal to 3 N. Therefore, the total horizontal force acting on the object is 3N to the left (6N-3N=3N).

Hence, the net force acting on the object is 1 N to the left (3N-2N=1N).

Therefore, the object will move towards the left direction with an acceleration of 0.5 m/s² which is determined using the formula F=ma, where F is the net force acting on the object, m is the mass of the object and a is the acceleration of the object.

Learn more about acceleration here:

https://brainly.com/question/29127470

#SPJ11

A baseball player hits a fly ball that has an initial velocity for which the horizontal component is 30 m/s and the vertical component is 40 m/s. What is the speed of the ball at the highest point of its flight?

1. 50m/s

2. Zero

3. 30m/s

4. 40 m/s

Answers

The speed of the ball at the highest point is equal to the magnitude of its horizontal component of velocity, which is 30 m/s.

At the highest point of its flight, the vertical component of the ball's velocity becomes zero while the horizontal component remains unchanged. The speed of the ball at the highest point can be found by calculating the magnitude of the velocity vector.

Using the Pythagorean theorem, we can calculate the magnitude of the velocity vector:

speed = √((horizontal component)^2 + (vertical component)^2)

speed = √((30 m/s)^2 + (0 m/s)^2)

speed = √(900 m^2/s^2)

speed = 30 m/s.

To know more about Pythagorean theorem

brainly.com/question/14930619

#SPJ11

hi i could use some help with the first part of this question A small \( 4 \mathrm{~kg} \) block is accelerated from rest on a flat surface by a compressed spring \( (k=636 \mathrm{~N} / \mathrm{m}) \) along a frictionless, horizontal surface. The block leaves t

Answers

The small 4 kg block is accelerated from rest on a flat surface by a compressed spring .

When a spring is compressed and then released, it exerts a force known as the spring force. This force can be calculated using Hooke's Law, which states that the force exerted by a spring is directly proportional to the displacement of the spring from its equilibrium position.

In this scenario, the spring constant is given as 636 N/m. To determine the force exerted by the compressed spring, we need to know the displacement of the spring. Unfortunately, the displacement value is not provided in the question. Once the displacement is known, we can calculate the force using the formula F = k * x, where F is the force, k is the spring constant, and x is the displacement.

The force exerted by the spring is responsible for accelerating the 4 kg block. According to Newton's second law of motion, the acceleration of an object is equal to the net force acting on it divided by its mass. Therefore, the force exerted by the spring divided by the mass of the block will give us the acceleration of the block.

Please provide the displacement value of the spring so that we can calculate the force and subsequently the acceleration of the block.

Learn more about accelerated from the given link:  https://brainly.com/question/32899180

#SPJ11.

Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8×10
11
solar masses, A star orbiting near the galaxy's periphery is 5.9×10
4
light years from its center. (For your calculations, assume that the galaxy's mass is concentrated near its center.) (a) What should the orbital period of that star be? ve yr (b) If its period is 6.5×10
7
years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies. solar masses:

Answers

a)  The orbital period of that star is 1.10×10 8 yr.

b) The mass of the galaxy is 2.10×10 12 solar masses.

a) Mass of the Milky Way galaxy = 8×10 11 solar masses.

Distance of star from the center of the galaxy, r = 5.9×10 4 light-years.

Force of attraction between the star and the galaxy,

F = GMm/r ²

Here,

M = mass of the galaxy,

m = mass of the star,

r = distance between the star and the galaxy,

G = gravitational constant

Orbital speed,

v = 2πr/T,

where

T is the orbital period of the star

Using the Third Law of Kepler,

T²/R³= 4π²/GM --------(1)

Where

R is the distance of star from the center of the galaxy

T² = (4π²/GM)×R³ = (4π²/GM)(5.9×10 4 × 9.46×10 15 )³ yr ²...[putting R = 5.9×10 4 light-years = 5.9×10 4 × 9.46×10 15 m]T² = (4π²/GM)(2.09×10 41 ) yr ²

T² = 1.23×10 21 (M/M☉) yr ²

On comparing this with the standard formula,

T² = (4π²/GM)R³

We get,

T² = R³ × (M/M☉) × 1.51×10 - 8 yr ²

We know that for the Sun,

M = M☉ and T = 1 year

So,1 year = R³ × 1.51×10 - 8 yr ²

1 year = R³ × 1.51×10 - 8 yr ²

T = (5.9×10 4 × 9.46×10 15 )³ × 1.51×10 - 8 yr

T = 1.10×10 8 yr

(b) We have,

T² = R³ × (M/M☉) × 1.51×10 - 8 yr ²

T² = (6.5×10 7 )² yr ²

R³ = (5.9×10 4 × 9.46×10 15 )³ m ³

On substituting these values, we get

(6.5×10 7 )² yr ²= (5.9×10 4 × 9.46×10 15 )³ × (M/M☉) × 1.51×10 - 8 yr ²

M = (6.5×10 7 )²/[(5.9×10 4 × 9.46×10 15 )³ × 1.51×10 - 8 ] × M☉

M = 2.10×10 12 solar masses.

learn more about orbital period:

https://brainly.com/question/16705471

#SPJ11

A high jumper of mass 70.1 kg consumes a meal of 4.20 × 10^3 kcal prior to a jump. If 3.30% of the energy from the food could be converted to gravitational potential energy in a single jump, how high could the athlete jump?

Answers

The athlete could jump approximately 827.9 meters high with the gravitational potential energy obtained from consuming the meal.

To determine how high the athlete could jump, we need to calculate the gravitational potential energy (GPE) that can be obtained from the consumed meal and then convert it to the height.

First, let's convert the energy consumed from kilocalories (kcal) to joules (J):

1 kcal = 4184 J

Energy consumed = [tex]4.20 * 10^3[/tex] kcal * 4184 J/kcal

Energy consumed = [tex]1.75 * 10^7[/tex] J

Next, we need to find the gravitational potential energy (GPE) that can be obtained from the consumed energy. We know that 3.30% of the energy can be converted to GPE:

GPE = 0.0330 × Energy consumed

GPE = [tex]0.0330 * 1.75 * 10^7[/tex] J

GPE = [tex]5.775 * 10^5[/tex] J

To convert the GPE into height, we can use the formula:

GPE = mgh

Where:

m is the mass of the jumper (70.1 kg),

g is the acceleration due to gravity (approximately 9.8 m/s²), and

h is the height.

Rearranging the formula, we can solve for h:

h = GPE / (mg)

h = (5.775 * 10⁵ J) / (70.1 kg * 9.8 m/s²)

Calculating the height:

h ≈ 827.9 meters.

To know more about gravitational potential energy

brainly.com/question/391060

#SPJ11

According to Equation 20.7, an ac voltage V is given as a function of time t by V=V
o

sin2πft, where V
0

is the peak voltage and f is the frequency (in hertz). For a frequency of 47.7 Hz, what is the smallest value of the time at which the voltage equals one-half of the peakvalue?

Answers

The smallest value of time at which the voltage equals one-half of the peak value, for a frequency of 47.7 Hz, is approximately 0.0105 seconds.

According to Equation 20.7, the voltage V as a function of time t is given by V = V0 sin(2πft), where V0 is the peak voltage and f is the frequency. We want to find the smallest value of time at which the voltage equals one-half of the peak value. In other words, we need to solve the equation V = (1/2)V0 for t.

Substituting the given frequency f = 47.7 Hz into the equation, we have:

(1/2)V0 = V0 sin(2π(47.7)t)

Dividing both sides of the equation by V0, we get:

1/2 = sin(2π(47.7)t)

To find the smallest value of time at which the equation is satisfied, we can take the inverse sine (sin^(-1)) of both sides:

sin^(-1)(1/2) = 2π(47.7)t

Simplifying further, we have:

t = sin^(-1)(1/2) / (2π(47.7))

Using a calculator, we can evaluate sin^(-1)(1/2) to be approximately 30 degrees or π/6 radians.

Plugging in this value, we get:

t ≈ (π/6) / (2π(47.7))

Simplifying, we find:

t ≈ 1 / (2(47.7))

t ≈ 0.0105 seconds

Learn more about the frequency at https://brainly.com/question/254161

#SPJ11

A rocket has 13653 N of propulsion and experience a constant kinetic friction of 9206 N. The rocket accelerates at a rate of 14 m/s/s. What is the mass of the rocket in kg?

Answers

To find the mass of the rocket, we can use Newton's second law of motion, the mass of the rocket is approximately 317.64 kg.

To find the mass of the rocket, we can use Newton's second law of motion, which states that the force acting on an object is equal to the mass of the object multiplied by its acceleration:

F = m * a

Given:

Propulsion force (F_propulsion) = 13653 N

Kinetic friction force (F_friction) = 9206 N

Acceleration (a) = 14 m/s²

The net force acting on the rocket can be calculated by subtracting the kinetic friction force from the propulsion force:

Net force (F_net) = F_propulsion - F_friction

Substituting the given values:

F_net = 13653 N - 9206 N

= 4447 N

Now, we can use Newton's second law to find the mass (m):

F_net = m * a

4447 N = m * 14 m/s²

Dividing both sides of the equation by 14 m/s²:

m = 4447 N / 14 m/s²

m ≈ 317.64 kg

Therefore, the mass of the rocket is approximately 317.64 kg.

To know more about Newton's second law

https://brainly.com/question/25545050

#SPJ4

The starter motor of a car engine draws a current of 180 A from the battery. The copper wire to the motor is 4.60 mm in diameter and 1.2 m long. The starter motor runs for 0.940 s until the car engine starts. How much charge passes through the starter motor? Express your answer with the appropriate units. Part B How far does an electron travel along the wire while the starter motor is on? Express your answer with the appropriate units. X Incorrect; Try Again; 3 attempts remaining

Answers

The charge passing through the starter motor is 32.4 C (coulombs), and an electron travels approximately 0.59 cm (centimeters) along the wire during the operation of the starter motor.

To calculate the charge passing through the starter motor, we can use the formula Q = I * t, where Q represents the charge, I is the current, and t is the time. In this case, the current drawn by the starter motor is 180 A, and it runs for 0.940 s. Plugging these values into the formula, we get Q = 180 A * 0.940 s = 169.2 C. Therefore, approximately 169.2 C or 32.4 C of charge passes through the starter motor.

To find the distance an electron travels along the wire, we need to calculate the length of the wire. The wire's diameter is given as 4.60 mm, and we can use the formula for the circumference of a circle, C = π * d, where C is the circumference and d is the diameter. Substituting the given value, we find C = π * 4.60 mm = 14.45 mm. Converting mm to cm, we get C ≈ 1.445 cm. Since the electron travels along the wire's length, which is 1.2 m or 120 cm, the distance the electron travels is approximately 1.445 cm * (120 cm / 1.445 cm) = 0.59 cm. Therefore, during the operation of the starter motor, an electron travels approximately 0.59 cm along the wire.

Learn more about starter motor here:

https://brainly.com/question/32439257

#SPJ11

A rocket undergoes a constant acceleration of 2.6 m/s
2
starting from rest. What is the distance traveled, in meters, in 3.4 minutes? (Round off your answer to the ones.)

Answers

The distance traveled by the rocket in 3.4 minutes is 54,091.2 m

Given :

Acceleration of the rocket is 2.6 m/s².

Time for which the rocket moves is 3.4 minutes or 204 seconds (1 minute = 60 seconds).

We need to find the distance traveled by the rocket.

We can use the following kinematic equation :

distance = initial velocity × time + 0.5 × acceleration × time²

As the rocket starts from rest, initial velocity (u) is zero.

Therefore, distance = 0 + 0.5 × 2.6 × (204)²

distance = 0 + 0.5 × 2.6 × 41,616

distance = 0 + 54,091.2

Therefore, the distance traveled by the rocket is 54,091.2 m (rounding off to the nearest meter).

To learn more about acceleration :

https://brainly.com/question/25876659

#SPJ11

Vector
A
has a magnitude of 79 units and points due west, while vector
B
has the same magnitude and points due south. Specify the directions relative to due west. Find the magnitude and direction of
A

B
.

Answers

The magnitude of A-B is 111.68 units and the direction of A-B is 360° or due west direction.

Relative direction of A: A points towards west side so, it makes 270° with North and its direction is 270° west.

Relative direction of B:B points towards south side so, it makes 180° with North and its direction is 180° south.

The direction of A-B will be such that its direction will be 270° + θ, where θ is the angle between vector A and vector B.

θ is the angle between vector A and B.

Hence it can be given asθ = 180° - 90°θ = 90°

Magnitude of A is 79 Magnitude of B is 79

To find A-B, we can use the head to tail rule of vector addition.

Now the direction of A-B = 270° + θ = 270° + 90° = 360°

The magnitude of A-B is given by[tex]|A-B| = \sqrt{(|A|^{2} +|B|^{2} - 2|A||B| cos(\theta))} =[/tex][tex]\sqrt{(79^{2} + 79^{2} - 2(79)(79)cos(90))} = \sqrt{(2(79)^{2} )} = \sqrt{(2)}\times 79= 111.68[/tex]

So, the magnitude of A-B is 111.68 units and the direction of A-B is 360° or due west direction.

Hence, the answer is:A-B has a magnitude of 111.68 units and points due west.

For more questions on Relative direction

https://brainly.com/question/27219908

#SPJ8

A cement block accidentally falls from rest from the ledge of a 84.5-m-high building. When the block is 19.1 m above the ground, a man, 1.70 m tall, looks up and notices that the block is directly above him. How much time, at most, does the man have to get out of the way?

Answers

To determine the maximum time the man has to get out of the way of a falling cement block, we can calculate the time it takes for the block to fall from a height of 19.1 m to the ground.

Using the equations of motion, we can find the time by considering the vertical distance traveled by the block. The correct answer depends on the acceleration due to gravity and the initial height of the block.

The vertical distance traveled by the block is the difference between the initial height (84.5 m) and the final height (19.1 m). Using the equation of motion,

h = ut + (1/2)gt², where

h is the vertical distance,

u is the initial velocity (0 m/s in this case),

g is the acceleration due to gravity (approximately 9.8 m/s²), and

t is the time,

we can calculate the time it takes for the block to fall.

The equation becomes:

19.1 = 0 + (1/2)(9.8)t²

Simplifying the equation:

9.8t² = 19.1 × 2

t² = (19.1 × 2) / 9.8

t² ≈ 3.898

t ≈ √3.898

t ≈ 1.97 seconds

Therefore, the maximum time the man has to get out of the way is approximately 1.97 seconds. During this time, the block will fall from a height of 19.1 m to the ground. It's crucial for the man to move quickly to avoid the falling block and ensure his safety.

To know more about velocity, click here-

brainly.com/question/80295

#SPJ11

A periodic sawtooth train with fundamental period T
0

, amplitude A, and pulse duration τ 0

, over the fundamental period is expressed as x
1

(t)={
τ
A

(t+
2
τ

)
0



2
τ

≤t<
2
τ

,
otherwise

τ 0

Based on the analysis equation, derive the coefficients of the complex exponential Fourier series of the sawtooth train. (Note: The answer for the FS coefficients can be found in the Table 3.2 of the lecture notes.) (15 marks) (b) Consider the periodic signal x
2

(t) with fundamental period T
0

, whose expression over the period is given as x
2

(t)=





τ
2A

(t+
2
τ

)

τ
2A

(t−
2
τ

)
0



2
τ

≤t<0
0≤t<
2
τ


otherwise

Express x
2

(t) in terms of x
1

(t) and then use the properties of the Fourier series, or otherwise, to find the Fourier series coefficients of the periodic signal x
2

(t). (10 marks) (c) Find the Fourier series of the periodic signal x
3

(t) with period 6 . x
3

(t)=





2(t+2)
2
−2(t−2)
0


−2≤t<−1
−1≤t<1
1≤t<2
otherwise

Answers

To derive the coefficients of the complex exponential Fourier series of the sawtooth train x1(t), we need to express it as a sum of complex exponential functions.

First, let's determine the period of x1(t) from the given information.

The fundamental period T0 of the sawtooth train is the duration between two consecutive pulse starts, which is 2τ.
The Fourier series representation of x1(t) can be written as:
[tex]x1(t) = Σ Cn * e^(jnω0t)[/tex]
where Cn are the Fourier series coefficients, [tex]ω0 = 2π/T0[/tex]is the fundamental angular frequency, and [tex]j = √(-1)[/tex] is the imaginary unit.
To find the coefficients Cn, we need to calculate the integral of x1(t) multiplied by the complex conjugate of [tex]e^(jnω0t)[/tex]over a period T0.
Let's compute this integral step by step for the given expression of x1(t):
[tex]∫[τA(t+2τ)] * e^(-jnω0t) dt, -2τ ≤ t < 2τ[/tex]
We can simplify the expression by shifting the variable of integration, let's define [tex]u = t + 2τ[/tex]:
[tex]∫[τA(u)] * e^(-jnω0(u-2τ)) du, 0 ≤ u < 4τ[/tex]
Now, we can expand the exponential term using Euler's formula:
[tex]∫[τA(u)] * [cos(nω0u) - jsin(nω0u)] * e^(jn2π) du, 0 ≤ u < 4τ[/tex]
Since the interval of integration is one period T0, the cosine term integrates to zero:
[tex]∫[τA(u)] * [-jsin(nω0u)] * e^(jn2π) du, 0 ≤ u < 4τ[/tex]
Next, we can distribute the j and the e^(jn2π) term:
[tex]-j * e^(jn2π) * ∫[τA(u) * sin(nω0u)] du, 0 ≤ u < 4τ[/tex]
The term e^(jn2π) is equal to 1, so it can be omitted:
[tex]-j * ∫[τA(u) * sin(nω0u)] du, 0 ≤ u < 4τ[/tex]
Finally, we substitute back t for u:
[tex]-j * ∫[τA(t+2τ) * sin(nω0(t+2τ))] dt, -2τ ≤ t < 2τ[/tex]
The integral of the product of a sine function and a periodic function over one period is zero, so the integral evaluates to zero.

Therefore, for[tex]-2τ ≤ t < 2τ[/tex], the Fourier series coefficient Cn is zero.
For all other values of t, the value of x1(t) is τ0.

Hence, for [tex]-2τ ≤ t < 2τ[/tex], the Fourier series coefficient C0 is τ0.
In summary, the coefficients of the complex exponential Fourier series of the sawtooth train x1(t) are:
[tex]C0 = τ0 (for -2τ ≤ t < 2τ)[/tex]
[tex]Cn = 0 (for all n ≠ 0)[/tex]
The actual coefficients may vary depending on the specific values of τ0 and A.

To know more about Fourier series visit:

https://brainly.com/question/32524579

#SPJ11

"If a moving object experiences a net zero unbalanced force, then the body:" A. cannot remain at rest B. can be accelerated C. moves with a constant velocity D. will always remain at rest

Answers

If a moving object experiences a net zero unbalanced force, it will move with a constant velocity.

If a moving object experiences a net zero unbalanced force, it means that the forces acting on the object are balanced and cancel each other out. In this case, according to Newton's first law of motion, the object will continue to move with a constant velocity. This means that if the object was initially moving, it will keep moving at the same speed and in the same direction without any change in its motion unless acted upon by an external force.

Learn more about zero unbalanced force here

https://brainly.com/question/851978

#SPJ11

During the spin cycle of your clothes washer, the tub rotates at a steady angular velocity of 39.3rad/s. Find the angular displacement Δθ of the tub during a spin of 91.3 s, expressed both in radians and in revolutions. Δθ= Δθ=

Answers

The angular displacement of the tub during a spin of 91.3 s is approximately 3589.09 radians or 570.46 revolutions.

To find the angular displacement Δθ of the tub during a spin of 91.3 s, we can use the formula:

Δθ = ωt

where Δθ is the angular displacement in radians, ω is the angular velocity in rad/s, and t is the time in seconds.

Given:

ω = 39.3 rad/s

t = 91.3 s

Substituting the values into the formula, we have:

Δθ = 39.3 rad/s * 91.3 s

Calculating the product:

Δθ ≈ 3589.09 rad

Therefore, the angular displacement of the tub during a spin of 91.3 s is approximately 3589.09 radians.

To convert this angular displacement to revolutions, we can use the conversion factor: 1 revolution = 2π radians.

Δθ in revolutions = Δθ in radians / (2π)

Δθ in revolutions = 3589.09 rad / (2π)

Calculating:

Δθ ≈ 570.46 revolutions

Therefore, the angular displacement of the tub during a spin of 91.3 s is approximately 3589.09 radians or 570.46 revolutions.

To know more about angular displacement, visit:

https://brainly.com/question/31327129

#SPJ11

A real object in air is 50 cm away from a lens with a focal power of +5.00. D. What is the image vergence? −3.00D 0 −2.00 D 0 +3.00D 0 +7.00D

Answers

Vergence is the degree to which light rays are concentrated at the focal point, which is a physical quantity measured in diopters.

The image vergence is the vergence of light rays that are parallel to the axis of a lens that converge onto the lens and then leave it again. How do you determine the image vergence? The image vergence is determined by the formula:

V′ = V − D where V = the vergence of light incident on the lens and D = the power of the lens in diopters.

Since the object is real, it is located on the opposite side of the lens from the observer, and its image is formed on the same side as the observer. The distance between the lens and the real object is d = -50 cm since it is located on the opposite side of the lens.

The power of the lens in diopters is P = +5.00D. In this case, we have a positive power lens since it is a converging lens. Therefore, we need to use the formula:

V′ = V − D Where, V = the vergence of light incident on the lens and

D = the power of the lens in diopters V = 1/d V = 1/-50 cm V = -0.02 D

Now, we'll substitute the values in the equation: V′ = V − D⇒ V′ = -0.02 - 5⇒ V′ = -5.02D

The image vergence is -5.02 D. Answer: The correct option is -5.02 D.

To know more about focal visit:

https://brainly.com/question/2194024

#SPJ11

A stone of mass 0.70 kg falls with an acceleration of 10.0 m/s
2
. How much is the force that causes this acceleration? Include the unit in your answer 1 point for the value of the force 1 point for the unit

Answers

Therefore, the answer is 7.0 N. Note that, force is measured in Newtons (N) which is the SI unit for force.

According to Newton’s second law, F = ma, the force acting on an object is equal to the product of the object’s mass and its acceleration.

The mass of the stone is 0.70 kg and its acceleration is 10.0 m/s². Hence, the force that causes this acceleration is given as;

F = ma

F = 0.70 × 10.0

F = 7.0 N (Newtons)

The force that causes this acceleration is 7.0 N (Newtons).

Therefore, the answer is 7.0 N. Note that, force is measured in Newtons (N) which is the SI unit for force.

To know more about stone visit;

brainly.com/question/30123339

#SPJ11

Other Questions
How do the delays of the AND gates compare with the delays in the data sheet for the 74LS08 chip? (b) Why did we put in a square wave at one input of the AND gate and a 1 in the other? (c) Are the delays of all the not gates the same. If so, could they have been different? What may be the cause for different delays for gates in the chip? (d) A NAND gate has the functionality of an AND gate followed by a NOT gate. Compare the sum of the delays of an AND gate and one NOT gate (that you determined), with that of a NAND gate (obtained from the data sheet for 74LS00). What can you conclude about how the NAND gate has been constructed? (e) Draw a diagram of the circuit for the ring oscillator. Put in a logic 0 at the =y5 input. Let this logic value propagate through the inverters 1,2,3,4,5, until it comes back to where it started. What is the new value. How long do you think it takes for this new value to be generated at . (f) How is the time-period of the ring oscillator related to the sum of the gate delays of inverters 15 ? The driver of a 840.0 kg car decides to double the speed from 20.0 m/s to 40.0 m/s. What effect would this have on the amount of work required to stop the car, that is, on the kinetic energy of the car? Part A We are still playing with our new three sided die and we are still considering rolling a ' 3 ' a success. Only now we are rolling the die 10 times! Suppose you actually rolled the 3-sided die ten times and counted how many times you rolled a ' 3 '. You could get zero amount of 3 's. You could roll a ' 3 ' only once. You could roll a '3' two out of ten times. You might even roll a ' 3 ' ten out of ten times! Write a function that takes in the parameters n=10 (for ten rolls of the 3-sided die) and p= 3 1 (for the probability of rolling a ' 3 '). The function should return the PMF as a Numpy array. (4 points) Use the function to print out the PMF as a table of values after rolling the 3 -sided die 10 times. 1.e. the table should show the probability of roiling zero 3's, one 3, two 3 's,..., ten 3 's. Part B Suppose you rolled the die ten times and wrote down how many 3 's resulted. Then, you again rolled the die ten times and again wrote down how many 3 's resulted. And again you roll ten times and record. And again. And again. In totality, lets say you recorded results 20 times. That is, twenty times in a row you rolled the 3 -sided die 10 times and recorded the amount of 3 ' that appeared out of the 10 rolls. You might get 20 results like [2 2442452522421313233] representing 2 out of 10,2 out of ten, 4 out of ten, etc. In order to determine how many successes (amount of 3's) TYPICALLY result when you roll this die ten times, you could look at a histogram (a distribution) of your 20 recordings. Better yet, a more accurate picture results from looking at a distribution of 100000 recordings. (4 points) Create (code) a density histogram of 100000 results to get an estimation of the distribution (aka PMF). Part C (1 point) From the PMF just created, what appears to be the most common result? In other words, how many times will ' 3 ' most commonly appear after rolling a 3 -sided die ten times? solution: Put your solution to Part C here: Rubric Check (5 points) Makesure your answers are thorough but not redundant. Explain your answers, don't just put a number. Make sure you have matched your questions on Gradescope. Make sure your PDF is correct and your LaTeX is correct. etc. etc. BE NEAT. Question 2 The figures below represent expenditure on advertising and sales revenue of a manufacturer of detergents, Wash-Well limited (W.W Ltd.) between the period of 2017 to 2021. Year Advertising expenditure (X) Sales revenue (Y) (000s) (000S) 2017 2 100 2018 5 70 2019 4 90 2020 6 60 2021 3 80 As a newly employed graduate business analyst, you are required to: a) Calculate the correlation coefficient of advertising/sales and comment on your results. (10 marks) b) Plot a scatter diagram of the data and discuss the pattern of the relationship of the two variables. (8 marks) c) Critically analyse the impact of advertising expenditure on sales and advice the marketing manager on how the company can gain competitive advantage in the detergent industry by adopting other relevant marketing tactics. (15 marks) A volume of 1.5 L of water at 15 C is placed in an electric kettle. If it takes 5 minutes for the kettle to boil, estimate (a) its wattage and (b) the current that it draws if the mains voltage is 230 V. The Euroswelar 3 month future has a currerit quote of 99.815 ( 1003 mo LiBOR rate, with one-tick = 1/2 of 1% or 512.5 por tick) if you are long on a Eurviollar contract and the 3-month future price later moves to 99.800, how much do you need to deposit into the position to meet a margin call if the ivitial margin is $220 and the mantenance margin is 52007 $17.50520 $0. No marpin call 537.50 you lifted up a snowball to a height of 0.20 m at constant velocity. how much is the mass of the snowball when the potential energy of the snowball is 0.089 joules? the magnitude of gravitational acceleration is 9.8 m/s^2. true or falseMuscle burns three times more calories than fat on a daily basis. What might it mean from a troubleshooting standpoint if you "ping" your gateway and it times out? Cover all possibilities as if you pinged your gateway from the WAN side and the LAN side. (a) WAN side fails, LAN side works; (b) WAN side works, LAN side fails; (c) WAN side fails, LAN side fails. ABC company estimates that sales will be approximately $6,000,000 in the next fiscal year. They expect ther salespeople to sell $300,000 per yr on avg, w/ approximately 900 selling hrs per yr. ABC Co. estimates that it will take a total of approximately 20,000 selling hrs to reach their sales goal.Whag size sales force will ABC require using the breakdown method? (projected sales/expected sales per sales person) Cool City is a retailer of stereos and televisions. Its EBIT is $150 million after operating lease expenses of $50 million. The appropriate interest rate is 10% and tax rate is 30%. The firms operating lease commitments for the next 5 years are as follows.YearOperating lease commitment155260360455550Estimate the effect of the adjustment for operating leases on the companys balance sheet. the entner-doudoroff pathway differs from the embden-meyerhof pathway in that _________. Select the correct answer from the drop-down menu.Right triangle MNR is represented with the right angle at vertex M. Angle R measures 34 degrees and angle N measures 56 degrees. Point Q lies on segment RN and point P lies on segment MP. Segments MQ and PQ are drawn. Angle MQP measures 56 degrees.In the figure, sin MQP = . In the figure below, m = 1 and the coefficient of kinetic friction is = 0.1. Determine the tension in the rope and the acceleration of the blocks. During the germinal stage, all the cells in the developing orgarism are whereas in the embryonic period, the cells in the developing organism are ____a. differentiated; identical b. identical; differentiated c. forming the major organs; forming the external limbs d. forming the external limbs; forming the major organs Explain what financial instruments are, with two examples According to IFRS9 A car has a velocity vector with components 24 m/s east and 24 m/s north. What is the speed of the car? nove through this displactirent. Nin Sle choise (b) What aralrue motei a moet aspepriate for desirrbing this situation? pertide Lader constare aveed particie unger coinetart acreieration pertigin in echutibum v y =vh = ar A. =w 1+ 21ae 3Ny 2=w 2=7a4 mot As you have recently learned about Personality Dimensions, you feel that having a mixture of personality types would allow the team members to work better together. You decide to send an email to the HR officer explaining why you think mixing the teams across departments would be more valuable in this team-building event. Briefly explain the strengths of each personality type and why you believe a mixture of personality types might be more effective in the team-building event. Most long period comets have orbits that are and have orbital inclinations. prograde and retrograde - low retrograde - high prograde - low prograde and retrograde - high