A point charge of +35 nC is above a point charge of –35 nC on a vertical line. The distance between the charges is 4.0 mm. What are the magnitude and direction of the dipole moment ?

Answers

Answer 1

Answer:

Magnitude = 140 x 10⁻¹² Cm

Direction = upwards

Explanation:

A pair of two equal and opposite point charges forms an electric dipole.

The magnitude of the moment of such dipole is the product of the magnitude of any of the charges (since the charges are the same in magnitude) and the distance of separation between them. i.e

p = q x d          ----------(i)

Where;

p = dipole moment

q = magnitude of any of the charges

d = distance between the charges.

The direction of the dipole moment is from the negative charge to the positive charge.

(a) From the question, the charges are +35 nC and -35 nC, and the distance between them is 4.00mm.

This implies that;

q = 35 nC = 35 x 10⁻⁹C

d = 4.00mm = 4.0 x 10⁻³ m

Substitute the values of q and d into equation (i) to give;

p = 35 x 10⁻⁹C x 4.00 x 10⁻³ m

p = (35 x 4.0) x (10⁻⁹ x 10⁻³) C m

p = 140 x 10⁻¹² Cm

The magnitude of the dipole moment is 140 x 10⁻¹² Cm

(b) From the question, the +35nC charge is above the -35nC charge on a vertical line as shown below;

                         o   +35nC

                          |

                          |

                          |

                          |

                          |

                          |

                         o    -35nC

Since the direction should point from the negative charge to the positive charge, this means that the direction of the dipole moment of the two charges is upwards (due North).

                         o   +35nC

                         ↑

                          |

                          |

                          |

                          |

                          |

                          |

                         o    -35nC


Related Questions

The voltage in an EBW operation is 45 kV. The beam current is 50 milliamp. The electron beam is focused on a circular area that is 0.50 mm in diameter. The heat transfer factor is 0.87. Calculate the average power density in the area in watt/mm2.

Answers

Answer:

[tex]P_d=6203.223062W/mm^2[/tex]

Explanation:

From the question we are told that:

Voltage [tex]V=45kV[/tex]

Current [tex]I=50mAmp[/tex]

Diameter  [tex]d=0.50mm[/tex]

Heat transfer factor [tex]\mu= 0.87.[/tex]

Generally the equation for  Power developed is mathematically given by

[tex]P=VI\\\\P=45*10^3*50*10^{-3}[/tex]

[tex]P=2.250[/tex]

Therefore

Power in area

[tex]P_a=1400*0.87[/tex]

[tex]P_a=1218watt[/tex]

Power Density

[tex]P_d=\frac{P_a}{Area}[/tex]

[tex]P_d=\frac{1218}{\pi(0.5^2/4)}[/tex]

[tex]P_d=6203.223062W/mm^2[/tex]

if 6000j of energy is supplid to a machine to lift a load of 300N through a vvertical height of 1M calculatework out put​

Answers

Answer:

300J

Explanation:

Work done = Force x the distance travelled in the direction of the force

=300 x 1

=300J

What is the maximum speed at which a car can round a curve of 25-m radius on a level road if the coefficient of static friction between the tires and road is 0.80? ​

Answers

I assume the curve is flat and not banked. A car making a turn on the curve has 3 forces acting on it:

• its weight, mg, pulling it downward

• the normal force from contact with the road, n, pushing upward

• static friction, f = µn, directed toward the center of the curve (where µ is the coefficient of static friction)

By Newton's second law, the net forces on the car in either the vertical or horizontal directions are

F (vertical) = n - mg = 0

F (horizontal) = f = ma

where a is the car's centripetal acceleration, given by

a = v ²/r

and where v is the maximum speed you want to find and r = 25 m.

From the first equation, we have n = mg, and so f = µmg. Then in the second equation, we have

µmg = mv ²/r   ==>   v ² = µgr   ==>   v = √(µgr )

So the maximum speed at which the car can make the turn without sliding off the road is

v = √(0.80 (9.80 m/s²) (25 m)) = 14 m/s

En la siguiente expresión matemáticas w=mg el peso w con relación a se relaciona con la masa m en una proporción
a) Directamente proporcional b) Inversamente proporcional c) Es constante
d) Ninguna de las anteriore

Answers

Answer:

a) Directamente proporcional

Explanation:

El peso se puede definir como la fuerza que actúa sobre un cuerpo o un objeto como resultado de la gravedad.

Matemáticamente, el peso de un objeto viene dado por la fórmula;

[tex] Peso = mg [/tex]

Donde;

m es la masa del objeto.

g es la aceleración debida a la gravedad.

De la expresión matemática, podemos deducir que el valor del peso de un objeto es directamente proporcional a la masa del objeto.

Por lo tanto, un aumento en la masa de un objeto provocaría un aumento en el peso del objeto y viceversa.

a stone is thrown vertically upwards with a velocity of 20 m per second determine the total time of flight of stone in air​

Answers

Answer:

Explanation:

The best way to do this is to remember the rule about the halfway mark in a parabolic path. At a trajectory's half way point in its travels, it will be at its max height. To get the total time in the air, we take that time at half way and double it. Here's what we know that we are told:

initial velocity is 20 m/s

Here's what we know that we are NOT told:

a = -9.8 m/s/s and

final velocity is 0 at an object's max height in parabolic motion.

We will use the equation:

[tex]v=v_0+at[/tex] where v is final velocity and v0 is initial velocity. Filling in:

0 = 20 + (-9.8)t and

-20 = -9.8t so

t = 2 seconds. The stone reaches its max height 2 seconds after it is thrown; that means that after another 2 seconds it will be on the ground. Total air time is 4 seconds.

what are three effects of gravity

Answers

Answer:

effect on motation.effect on direction

an object of volume has 20ml has a mass of 2.5kg what will be its density​

Answers

Answer:

0.125

Explanation:

Density =mass/volume

Density =2.5/20

Density =0.125

Answer:

D=m/v

=2.5kg/(20/1000000)m^3

2.5kg÷0.000002m^3

1250000kgm^-3

Explanation:

20 is divided by 1000000 because m^3 is its si unit

Simple Pendulum: A 34-kg child on an 18-kg swing set swings back and forth through small angles. If the length of the very light supporting cables for the swing is 4.9 m, how long does it take for each complete back-and-forth swing

Answers

Answer:

The correct answer is "4.443 sec".

Explanation:

Given:

Mass of child,

= 34 kg

Mass of swing,

= 18 kg

Length,

= 4.9 m

The time period of pendulum will be:

T = [tex]2 \pi \sqrt{4g}[/tex]

  = [tex]2 \pi \sqrt{\frac{4.9}{9.8} }[/tex]

  = [tex]4.443 \ sec[/tex]  

Answer:

The time taken to back and forth is 4.4 s .

Explanation:

Length, L = 4.9 m

let the time period is T.

Acceleration due to gravity, g = 9.8 m/s^2

Use the formula of time period

[tex]T = 2 \pi\sqrt{L}{g}\\\\T = 2 \times 3.14\sqrt{4.9}{9.8}\\\\T = 4.4 s[/tex]

The coefficients of friction between a race cars tyres and the track surface are

Answers

the question is about tyres of a race car, which are made of rubber and will be in contact with a race track, which is generally made from asphalt, the static coefficient of friction is in the range of (0.5–0.8), in dry conditions (Source: Friction and Friction Coefficients ).

Explanation:

please mark me as a brainlieast

What is the principle of potentiometer?​

Answers

Answer:

The principle of a potentiometer is that the potential dropped across a segment of a wire of uniform cross-section carrying a constant current is directly proportional to its length. The potentiometer is a simple device used to measure the electrical potentials (or compare the e.m.f of a cell).

Explanation:

I hope it will help you

A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 ksi. The bar is subjected to a steady torsional stress of 15 kpsi and an alternating bending stress of 25 ksi. Find the factor of safety guarding against a static failure, and either the factor of safety guarding against a fatigue failure or the expected life of the part. For the fatigue analysis use Modified Goodman criterion.

Answers

Answer:

The correct solution is:

(a) 1.66

(b) 1.05

Explanation:

Given:

Bending stress,

[tex]\sigma_b = 25 \ kpsi[/tex]

Torsional stress,

[tex]\tau= 15 \ kpsi[/tex]

Yield stress of steel bar,

[tex]\delta_y = 60 \ kpsi[/tex]

As we know,

⇒ [tex]\sigma_{max}^' \ = \sqrt{\sigma_b^2 + 3 \gamma^2}[/tex]

        [tex]= \sqrt{(25)^2+3(15)^2}[/tex]

        [tex]=36.055 \ kpsi[/tex]

(a)

The factor of safety against static failure will be:

⇒ [tex]\eta_y = \frac{\delta_y}{\sigma_{max}^'}[/tex]

By putting the values, we get

        [tex]=\frac{60}{36.055}[/tex]

        [tex]=1.66[/tex]

(b)

According to the Goodman line failure,

[tex]\sigma_a = \sigma_b = 25 \ kpsi[/tex]

[tex]S_e = 40 \ kpsi[/tex]

[tex]\sigma_m = \sqrt{3} \tau[/tex]

     [tex]=\sqrt{3}\times 15[/tex]

     [tex]=26 \ kpsi[/tex]

[tex]Sut = 80 \ kpsi[/tex]

⇒ [tex]\frac{\sigma_a}{S_e} +\frac{\sigma_m}{Sut} =\frac{1}{\eta_y}[/tex]

      [tex]\frac{25}{40}+\frac{26}{80}=\frac{1}{\eta_y}[/tex]

              [tex]\eta_y = 1.05[/tex]

2. What is the average speed of an athlete who runs 1500 m in 4 minutes?

Answers

Answer:

375 is the answer.

Explanation:

Speed : Distance / Time taken

S: m/ s

s: 1500/4

375 m / s answer

Answer:

375m per minute

Explanation:

if you are looking for a diffrent unit just multiply your answer by however many minutes are in that time frame

define nortons theorem​

Answers

Answer:

In direct-current circuit theory, Norton's theorem is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.

A T-shirt is launched at an angle of 30° with an initial velocity of 25 m/s how long does it take to reach the peak? How long is it in the air for totally?

Answers

Answer:

The launched angle θ = 30 degrees, the initial velocity Vo = 20 m/s, the initial horizontal velocity Vox= ?, the initial vertical velocity Voy = ?, the time of flight t = ? the maximum height h = ?

Vox = Vo * (cos of 30 degrees)

Voy = Vo * (sin of 30 degrees)

t = 2 * (Voy / g)

h = Voy * 0.5 t - 1/2 g * (0.5t)^2

I have given the equations for you to use, just plug – in the values and then solve in a step by step manner.

Answer:

approximately 15.68 meters.

Explanation:

Here is how;

First, let's calculate the time of flight for the t-shirt. We can use the vertical motion equation:

y = y0 + v0y * t - 0.5 * g * t^2

where:

y is the vertical displacement (27.7 m)

y0 is the initial vertical position (0 m)

v0y is the vertical component of the initial velocity (v0 * sin(theta))

g is the acceleration due to gravity (9.8 m/s^2)

t is the time of flight

Plugging in the values:

27.7 = 0 + (25.8 * sin(63.6°)) * t - 0.5 * 9.8 * t^2

Simplifying the equation, we get a quadratic equation:

4.9t^2 - (25.8 * sin(63.6°))t + 27.7 = 0

Solving this quadratic equation will give us the time of flight, t. Using the quadratic formula, we find that:

t ≈ 1.23 s

Now, let's find the horizontal displacement of the t-shirt using the horizontal motion equation:

x = x0 + v0x * t

where:

x is the horizontal displacement

x0 is the initial horizontal position (0 m)

v0x is the horizontal component of the initial velocity (v0 * cos(theta))

t is the time of flight

Plugging in the values:

x = 0 + (25.8 * cos(63.6°)) * 1.23

Calculating this:

x ≈ 14.92 m

The t-shirt falls short of reaching the person by the horizontal distance of:

Shortfall = 30.6 m - 14.92 m

Calculating this:

Shortfall ≈ 15.68 m

Therefore, the t-shirt will be approximately 15.68 meters short of reaching the person.

how interfacial angles are determined using contact goinometer​

Answers

Interfacial angles can be measured using a contact goniometer or more precisely using a reflection goniometer. See Klein & Hurlbut's figure 2.40. The interfacial angle between two faces of a mineral crystal is identical for all crystals of the same mineral that exhibit the corresponding two faces.

Consider two points in an electric field. The potential at point 1, V1, is 33 V. The potential at point 2, V2, is 175 V. An electron at rest at point 1 is accelerated by the electric field to point 2.

Required:
Write an equation for the change of electric potential energy ΔU of the electron in terms of the symbols given.

Answers

Answer:

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

Explanation:

Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.

Substituting the values of the variables into the equation, we have

ΔV = V₂ - V₁.

ΔV = 175 V - 33 V.

ΔV = 142 V

The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.

So, substituting the values of the variables into the equation, we have

ΔU = eΔV

ΔU = eΔV

ΔU = -1.602 × 10⁻¹⁹ C × 142 V

ΔU = -227.484 × 10⁻¹⁹ J

ΔU = -2.27484 × 10⁻²¹ J

ΔU ≅ -2.275 × 10⁻²¹ J

So, the required equation for the electric potential energy change is

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

What is the Ah rating of a battery that can provide 0.8 A for 76 h?

Answers

Answer:

6.08

Explanation:

Given that,

Current, I = 0.8 A

Time, t = 76 h

We need to find the Ah rating of a battery. It can be calculated by taking the product of current and time. So,

Ah = (0.8)(76)

= 6.08 Ah

So, the Ah rating of the battery is 6.08.

a volcano that may erupt again at some time in the distant future is

Answers

The answer is a dormant volcano

An airplane which intends to fly due south at 250 km/hr experiences a wind blowing westward at 40 km/hr. What is the actual speed of the airplane relative to the ground? ​

Answers

Answer:

simple is rumple a daily ok I'll be

A spherical, concave shaving mirror has a radius of curvature of 0.983 m. What is the magnification of a person's face when it is 0.155 m from the vertex of the mirror (answer sign and magnitude)

Answers

Answer:

Magnification = 1

Explanation:

given data

radius of curvature r = - 0.983 m

image distance u = - 0.155

solution

we get here first focal length that is

Focal length, f = R/2     ...................1

f = -0.4915 m

we use here formula that is

[tex]\frac{1}{v} + \frac{1}{u} + \frac{1}{f}[/tex]      .................2

put here value and we get

[tex]\frac{1}{v} = \frac{1}{0.155} - \frac{1}{4915}[/tex]  

v = 0.155 m

so

Magnification will be here as

m = [tex]- \frac{v}{u}[/tex]

m =  [tex]\frac{0.155}{0.155}[/tex]

m = 1

Answer:

The magnification is 1.5.

Explanation:

radius of curvature, R = - 0.983 m

distance of object, u = - 0.155 m

Let the distance of image is v.

focal length, f = R/2 = - 0.492 m

Use the mirror equation

[tex]\frac{1}{f}=\frac{1}{v}+\frac {1}{u}\\\\\frac{-1}{0.492}=\frac{1}{v}-\frac{1}{0.155}\\\\\frac{1}{v}=\frac{1}{0.155}-\frac{1}{0.492}\\\\\frac{1}{v}=\frac{0.492-0.155}{0.155\times 0.492}\\\\\frac{1}{v}=\frac{0.337}{0.07626}\\ \\v = 0.226 m[/tex]

The magnification is given by

m = - v/u

m = 0.226/0.155

m = 1.5

If a conducting loop of radius 10 cm is onboard an instrument on Jupiter at 45 degree latitude, and is rotating with a frequency 2 rev/s; What is the maximum emf induced in this loop? If its resistance is 0.00336 ohms, how much current is induced in this loop? And what is the maximum power dissipated in the loop due to its rotation in Jupiter's magnetic field?

Answers

Answer:

a)  fem = - 2.1514 10⁻⁴ V,  b) I = - 64.0 10⁻³ A, c)    P = 1.38  10⁻⁶ W

Explanation:

This exercise is about Faraday's law

         fem = [tex]- \frac{ d \Phi_B}{dt}[/tex]

where the magnetic flux is

        Ф = B x A

the bold are vectors

        A = π r²

we assume that the angle between the magnetic field and the normal to the area is zero

         fem = - B π 2r dr/dt = - 2π B r v

linear and angular velocity are related

        v = w r

        w = 2π f

        v = 2π f r

we substitute

        fem = - 2π B r (2π f r)

        fem = -4π² B f r²

For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T

we reduce the magnitudes to the SI system

       f = 2 rev / s (2π rad / 1 rev) = 4π Hz

we calculate

       fem = - 4π² 428 10⁻⁶ 4π 0.10²

       fem = - 16π³ 428 10⁻⁶ 0.010

       fem = - 2.1514 10⁻⁴ V

for the current let's use Ohm's law

        V = I R

        I = V / R

         I = -2.1514 10⁻⁴ / 0.00336

         I = - 64.0 10⁻³ A

Electric power is

        P = V I

        P = 2.1514 10⁻⁴ 64.0 10⁻³

        P = 1.38  10⁻⁶ W

Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the nozzle is 60 cm2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle

Answers

a) The mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle is 23.6 cm².

a) The mass flow rate through the nozzle can be calculated with the following equation:

[tex] \dot{m_{i}} = \rho_{i} v_{i}A_{i} [/tex]

Where:

[tex]v_{i}[/tex]: is the initial velocity = 20 m/s

[tex]A_{i}[/tex]: is the inlet area of the nozzle = 60 cm²  

[tex]\rho_{i}[/tex]: is the density of entrance = 2.21 kg/m³

[tex] \dot{m} = \rho_{i} v_{i}A_{i} = 2.21 \frac{kg}{m^{3}}*20 \frac{m}{s}*60 cm^{2}*\frac{1 m^{2}}{(100 cm)^{2}} = 0.27 kg/s [/tex]  

Hence, the mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle can be found with the Continuity equation:

[tex] \rho_{i} v_{i}A_{i} = \rho_{f} v_{f}A_{f} [/tex]

[tex] 0.27 kg/s = 0.762 kg/m^{3}*150 m/s*A_{f} [/tex]

[tex] A_{f} = \frac{0.27 kg/s}{0.762 kg/m^{3}*150 m/s} = 0.00236 m^{2}*\frac{(100 cm)^{2}}{1 m^{2}} = 23.6 cm^{2} [/tex]

Therefore, the exit area of the nozzle is 23.6 cm².

You can find another example of mass flow rate here: https://brainly.com/question/13346498?referrer=searchResults

I hope it helps you!                                                                   

a) Mass flow rate through the nozzle: 0.265 kilograms per second, b) Exit area of the nozzle: 23.202 square centimeters.

We determine the Mass Flow Rate through the nozzle and the Exit Area of the nozzle by means of the Principle of Mass Conservation. A nozzle is a device that works at Steady State, so that Mass Balance can be reduced into this form:

[tex]\dot m_{in} = \dot m_{out}[/tex] (1)

Where:

[tex]\dot m_{in}[/tex] - Inlet mass flow, in kilograms per second.

[tex]\dot m_{out}[/tex] - Outlet mass flow, in kilograms per second.

Given that air flows at constant rate, we expand (1) by dimensional analysis:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex] (2)

Where:

[tex]\rho_{in}, \rho_{out}[/tex] - Air density at inlet and outlet, in kilograms per cubic meter.

[tex]A_{in}, A_{out}[/tex] - Inlet and outlet area, in square meters.

[tex]v_{in}, v_{out}[/tex] - Inlet and outlet velocity, in meters per second.

a) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex] and [tex]v_{in} = 20\,\frac{m}{s}[/tex], then the mass flow rate through the nozzle is:

[tex]\dot m = \rho_{in}\cdot A_{in}\cdot v_{in}[/tex]

[tex]\dot m = \left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)[/tex]

[tex]\dot m = 0.265\,\frac{kg}{s}[/tex]

The mass flow rate through the nozzle is 0.265 kilograms per second.

b) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex], [tex]v_{in} = 20\,\frac{m}{s}[/tex], [tex]\rho_{out} = 0.762\,\frac{kg}{m^{3}}[/tex] and [tex]v_{out} = 150\,\frac{m}{s}[/tex], then the exit area of the nozzle is:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex]

[tex]A_{out} = \frac{\rho_{in}\cdot A_{in}\cdot v_{in}}{\rho_{out}\cdot v_{out}}[/tex]

[tex]A_{out} = \frac{\left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)}{\left(0.762\,\frac{kg}{m^{3}} \right)\cdot \left(150\,\frac{m}{s} \right)}[/tex]

[tex]A_{out} = 2.320\times 10^{-3}\,m^{2}[/tex]

[tex]A_{out} = 23.202\,cm^{2}[/tex]

The exit area of the nozzle is 23.202 square centimeters.

What is a measure between the difference in start and end positions?

Answers

Answer:

Displacement

General Formulas and Concepts:

Kinematics

Displacement vs Total Distance

Explanation:

Displacement is the difference between the start position and end position.

Total Distance is the entire distance traveled between the start and end position.

Topic: AP Physics 1 Algebra-Based

Unit: Kinematics

A roller coaster has a vertical loop with radius 25.7 m. With what minimum speed should the roller-coaster car be moving at the top of
the loop so that the passengers do not lose contact with the seats?
m/s

Answers

Answer:

15.88m/s

Explanation:

At the top of the roller coaster you will have three forces acting on the roller-coaster. See the image below. Fc is the centripetal force (for an object in circular motion), Fg is the gravitational force, and Fn is the normal force. To achieve the minimum speed we assume the roller-coaster is barely touching the vertical loop and so the normal force is zero. This leaves two acting forces.

[tex]F_g = F_c\\mg = \frac{m\times v^2}{r}\\v = \sqrt{gr} = \sqrt{9.81 \times 25.7} = 15.88 m/s[/tex]

. A ball of mass 0.50 kg is rolling across a table top with a speed of 5.0 m/s. When the ball reaches the edge of the table, it rolls down an incline onto the floor 1.0 meter below (without bouncing). What is the speed of the ball when it reaches the floor?

Answers

Answer:

4

Explanation:

how does laser works ?

Answers

Explanation:

Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.

26. A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?

Answers

Answer:

Explanation:

The formula for determining the Emf induced in a loop is:

[tex]\varepsilon = \dfrac{d \phi}{dt}[/tex]

[tex]\varepsilon = \dfrac{d (B*A)}{dt}[/tex]

[tex]\varepsilon = A \times \dfrac{dB}{dt}[/tex]

[tex]\varepsilon = (side (l))^2 \times \dfrac{dB}{dt}[/tex]

where;

square area A = ( l²)

l² = 6.0 cm = 6.0 × 10⁻²

[tex]\varepsilon = ( 6.0 \times 10^{-2})^2 \times 5.0 \times 10^{-3} \ T/S[/tex]

[tex]\varepsilon =18 \times 10^{6} \ V[/tex]

Recall that:

The resistivity of copper = [tex]1.68 \times 10^{-8}[/tex] ohm m

We can as well say that the length of the copper wire = perimeter of the square loop;

The perimeter of the square loop = 4L

Thus, the length of the copper wire  = 4 (6.0 × 10⁻² )m

= 24× 10⁻² m

Finally, the current in the loop is determined from the formula:

V = IR

where,

V = voltage

I = current and R = resistance of the wire

Making "I" the subject:

I = V/R

where;

[tex]R = \dfrac{\rho \times l}{A}[/tex]

[tex]R = \dfrac{\rho \times l}{\pi * r^2}[/tex]

[tex]R = \dfrac{1.68 *10^{-8} \times 24*10^{-2}}{\pi * (1*10^{-3})^2}[/tex]

[tex]R = 0.001283 \ ohms[/tex]

[tex]I = \dfrac{18*10^{-6}}{0.001283}[/tex]

I = 14.029 mA

The instrument includes a light source, which is passed through a Choose... , which isolates a single wavelength to pass through an aperture to reach the Choose... . Then, the light travels to the Choose... , which measures the intensity of light reaching it.

Answers

Answer:

Following are the response to the given question:

Explanation:

It's being used to measure the amount of light absorbed after traveling through a test tube (the amount of solar radiation received). For several quantitative estimations, this technique is widely employed. Spectrometer and Spectrometer were two devices that are used together to light intensity and light intensity.

It creates and diffuses phosphorescent light into the selected frequency, while the Spectrometer measures the strength of attenuation by the sample solution.

Diffraction beams or prisms are being used to convert polychromatic illumination into monochrome light.

Afterward, the sunlight has a certain hue. Once it reaches the specimen cuvette, it begins absorption. It falls on a sensor that transforms its intensity into such an electronic current.

Here are some ways to fill in such gaps:

In order to reach the specimen cuvette, the light from the light source must be routed via an aperture in order to be isolated by either a diffraction pattern. Light travels to the detector, which detects its intensity.

A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of 0.235 A. A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.40 s.

Required:
a. What average emf is induced in the second coil if it has a diameter of 3.5 cm and N = 7?
b. What is the induced emf if the diameter is 7.0 cm and N = 10?

Answers

Answer:

a) ε = 14.7 μv

b) ε = 21 μv

Explanation:

Given the data in the question;

Diameter of solenoid; d = 3 cm

radius will be half of diameter,  so, r = 3 cm / 2 = 1.5 cm = 1.5 × 10⁻² m

Number of turns; N = 40 turns per cm = 4000 per turns per meter

Current; [tex]I[/tex] = 0.235 A

change in time Δt = 0.40 sec

Now,

We determine the magnetic field inside the solenoid;

B = μ₀ × N × [tex]I[/tex]  

we substitute

B = ( 4π × 10⁻⁷ Tm/A ) × 4000 × 0.235  

B = 1.1881 × 10⁻³ T

Now, Initial flux through the coil is;

∅₁ = NBA = NBπr²  

and the final flux  

∅₂ = 0        

so, the εmf induced ε = -Δ∅/Δt = -( ∅₂ - ∅₁ ) / Δt

= -( 0 - NBπr² ) / Δt  

= NBπr² / Δt    

a)

for N = 7

ε = [ 7 × ( 1.1881 × 10⁻³ ) × π( 1.5 × 10⁻² )² ] / 0.40

ε = 14.7 × 10⁻⁶ v

ε = 14.7 μv      

b)

for N = 10

ε = [ 10 × ( 1.1881 × 10⁻³ ) × π( 1.5 × 10⁻² )² ] / 0.40

ε = 21 × 10⁻⁶ v

ε = 21 μv  

 

1. There is a famous intersection in Kuala Lumpur, Malaysia, where thousands of vehicles pass each hour. A 750 kg Tesla Model S traveling south crashes into a 1250 kg Ford F-150 traveling east. What are the initial speeds of each vehicle before collision if they stick together after crashing into each other and move at an angle of 320 and a common velocity of 18 m/s.

Answers

Solution :

Let the positive [tex]x-axis[/tex] is along the East and the positive [tex]y[/tex] direction is along the north.

Given :

Mass of the Tesla car, [tex]m_1[/tex] = [tex]750 \ kg[/tex]

Mass of the Ford car, [tex]m_2 = 1250 \ kg[/tex]

Now let the initial velocity of Tesla car in the south direction be = [tex]-v_1j[/tex]

The initial momentum of Tesla car, [tex]p_1 = -750 \ v_1[/tex]

Let the initial velocity of Ford car in the east direction be = [tex]v_2 \ i[/tex]

So the initial momentum of the Ford car is [tex]p_2=1250\ v_2 \ i[/tex]

Therefore, the initial velocity of both the cars is [tex]p_i = p_1+p_2[/tex]

                                                                  [tex]=1250 \ v_2 \ i - 750\ v_1 \ j[/tex]

Now the final velocity of both the cars is [tex]v = 18 \ m/s[/tex]

So the vector form is :

[tex]v = 18\cos 32\ i-18 \sin 32 \ j[/tex]

  [tex]= 15.26 \ i - 9.54 \ j[/tex]

Therefore the momentum after the accident is

[tex]p_f=(m_1+m_2) \times v[/tex]

    [tex]=(750+1250) \times (15.26 \ i - 9.54 \ j)[/tex]

    [tex]= 30520\ i -19080\ j[/tex]

According to the law of conservation of momentum, we know

[tex]p_i = p_f[/tex]

[tex]1250 \ v_2 \ i - 750\ v_1 \ j[/tex]  [tex]= 30520\ i -19080\ j[/tex]

[tex]1250 \ v_2 = 30520[/tex]

[tex]v_2=24.4 \ m/s[/tex]

From, [tex]750\ v_1 = 19080[/tex]

We get, [tex]v_1=25.4 \ m/s[/tex]

Therefore the speed of Tesla car before collision = 25.4 m/s

The speed of ford car before collision = 24.4 m/s

Other Questions
reasons for classifying organisms use trigonometry to find the unknown side (round to 1 decimal) What happened after 1872 that led to a decline in violence against African Americans?A. The federal government took legal action against many members of the Ku Klux Klan.B. Many southern blacks chose to take advantage of new educational opportunities.C. Southern black congregations became increasingly involved in local communities.D. The Ku Klux Klan abandoned violent tactics to focus on electoral strategies to obtain their goals. what is a computer and its impact to society In the morning, the temperature was 15 degree F. During the day, the temperature fell 37 degrees. Which expression shows how to find the temperature at the end of the day hlpppppppppppppppppppppppppppppppp Is segment AB tangent to circle O shown in the diagram, for AB = 8, OB = 3.75, and AO = 10.25. Explain your reasoning and show all work in your own words. (The figure is not drawn to scale.) Which of the following was a strategy used by the NAACP to challenge racial discrimination? Consider the probability that at most 85 out of 136 DVDs will work correctly. Assume the probability that a given DVD will work correctly is 52%. Specify whether the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions. What is not an issue regarding DNA identification?(A) It is not very reliable(B) Having databases of millions of DNA profiles can result in more incorrect coincidental matches with partial samples(C) There is disagreement about whose DNA should be included in the database(D) Private information related to peoples genetic makeup could get out, which could result in discrimination against them on that basis PLS HELP!!!Solve x^2 4 = 5 by graphing the related function.A) There are two solutions: 3 and 3.B) There are two solutions: 1.C) There is one solution: 1D) There are no real number solutions. Most of our basic Constitutionalrights were stated in the1 Articles of Confederation2 Constitutional Convention3 Constitution's first tenamendments4 Declaration ofIndependence Two forces have magnitudes in the ratio3 : 5 and the angle between their directions is 60. If their resultant is 35 N,what are their magnitudes ? II) One 3.2-kg paint bucket is hanging by a massless cord from another 3.2-kg paint bucket, also hanging by a massless cord, as shown in Fig. 4-49. ( ) If the buckets are at rest, what is the tension in each cord? ( ) If the two buckets are pulled upward with an acceleration of 1.25 m/s by the upper cord, calculate the tension in each cord Question 3 of 10What has the same value no matter where it is located in the universe?A. VolumeB. WeightC. MassD. DensityReset Selection You own 400 shares of Stock A at a price of $50 per share, 290 shares of Stock B at $75 per share, and 700 shares of Stock C at $27 per share. The betas for the stocks are .6, 1.2, and .5, respectively. What is the beta of your portfolio Antonia and Aleena both bought a book that cost 3.50 each. How much change did they get from 10.00?6.502.003.00 Positive and negative aspects of advances in technology ANSWER RIGHT ILL BRAINLIST Why are independent agencies separate from the executive branch?A. Independent agencies have areas of responsibility that fall outside the executive branch.B. Independent agencies serve limited purposes within all three branches of government.C. Independent agencies serve many purposes across all three branches of government.D. Independent agencies do not share any of the responsibilities of the executive branch. Ejercicios para la actividad 7.1. Contrastar que, con el cambio de modelo de una mquina, el proceso se ha hecho msvariable. La varianza con el modelo anterior fue de 23.15. Se realizan 25 observaciones con elnuevo modelo obtenindose una varianza muestral2. de 40.5. Utilice un 99% de confianza para realizar el contraste. (Contraste bilateral)