Answer:
-9.25
Step-by-step explanation:
Answer: Heyaa! ~
Your Exact Answer is... - 37/4 but your Decimal form is -9.25
Step-by-step explanation:
Convert the mixed numbers to improper fractions, then find the LCD and combine.
Hopefully this helps you!
-Matthew ~
Solve the division problem:
10)430
O A. 40
B. 43
C. 400
D. 403
Answer is option B.43
430÷ 10 = 43
By : Modern Einstein
please help me thank you
Answer:
2.5
Step-by-step explanation:
mean=sumfx/sumf
1×2+2×2+3×5+4×1/2+2+5+1
25/10
2.5
a bookstore sells 7 books for $99.75 which table represents the relationship between number of books and total price?
Answer:
You did not provide the tables to choose from, but the relationship between number of books and total price is that each book is 14.25. Hope that helps at least.
What is the value of the x-coordinate of point A?
Choose 1 answer
A) sin(50)
B) cos(50)
C) sin(140)
D) cos(140)
E) sin(230)
F)cos(230)
Find the median of the data set: 5, 19, 11, 3, 21, 9. (Round your answers to one decimal place, if necessary.)
Answer:
3.33
Step-by-step explanation:
In this case, the number we have is an even number so you can not choose the one in the middle so you would take those two and add the then divide them by how many numbers you have there which would be 6 in the case and then round it to the nearest decimal.
ryan’s mom randomly chooses two days each week for Ryan to do his chores. what is the probability that she picks Saturday and Sunday?
Answer:
2/7= 28.6%
Step-by-step explanation:
Since those are 2 specific days out of seven, we divide it so that there are 2/7 days. Then we change it to a percentage, which would be the equation of 2/7*100, which is equal to 28.57%, which rounds to 28.6%.
Determine the linear function of the line that goes through the points (2; 6) and
(6; 5).
(1) = −6,50 + 0,50;
(2) = 0,25 − 6,50;
(3) = 6,50 − 0,25;
(4) = −0,65 − 0,25x
Answer:
[tex]y=6.50-0.25x[/tex]
Step-by-step explanation:
[tex]\textsf{let}\:(x_1,y_1)=(2,6)[/tex]
[tex]\textsf{let}\:(x_2,y_2)=(6,5)[/tex]
[tex]\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{5-6}{6-2}=-0.25[/tex]
Point-slope form of linear equation: [tex]y-y_1=m(x-x_1)[/tex]
(where m is the slope and (x₁, y₁) is a point on the line)
Substituting the found slope and a point on the line:
[tex]\implies y-6=-0.25(x-2)[/tex]
[tex]\implies y-6=-0.25x+0.5[/tex]
[tex]\implies y=-0.25x+6.5[/tex]
Rearranging the equation to match the answer options given:
[tex]\implies y=6.50-0.25x[/tex]
NO LINKS!!! Please help me with this graph part 3a
Answer:
g(x) = -|x| - 8
Step-by-step explanation:
Finding the values of a, h, and k :
a = slope of the line
a = -10 + 8 / 2 - 0a = -2/2a = -1h = any horizontal shift (left/right)
As it lies on the y-axis, we can conclude no horizontal shift has taken placeh = 0k = vertical shift (up/down)
It has shifted 8 units downk = -8Forming the equation :
⇒ g(x) = (-1)|x - 0| - 8
⇒ g(x) = -|x| - 8
Answer:
[tex]\large{\boxed{\sf y = -1|x-0| -8}}[/tex]
Explanation:
Absolute value of a graph formula:
y = a |x -h| + kIdentify the vertex : (h, k) = (0, -8)
Take two points: (0, -8), (1, -9)
[tex]\sf Find \ slope \ (a) : \sf \ \dfrac{y_2 - y_1}{x_2- x_1} \ = \ \ \dfrac{-9-(-8)}{1-0} \ \ = \ \ -1[/tex]
Put them together : [tex]\bf y = -1|x-0| -8[/tex]
When a plane intersects a sphere, what two-dimensional shape describes the cross-section?
Answer:
A Circle
Step-by-step explanation:
Kathy sells encyclopedias and earns $40 for each set she sells. How many sets did she sell if she earned $600 last week?
Answer:
15
Step-by-step explanation:
Given:
Kathy sells encyclopedias and earns $40 for each set she sells.
To Find:
How many sets did she sell if she earned $600 last week?
Solve:
Since kathy sells encyclopedias and earns $40 for each set she sells.
And if kathy total is $600
then we do
$600 divide by $40
600/40 = 15
Hence, she sold 15 sets last week.
Kavinsky
Answer:
15
Step-by-step explanation:
This is basically 600/40
600/40 = 15
Which survey question could have been asked to produce this data display?
A. How long did it take you to walk to the waterfall and back?
B. How many times did you walk to the park last month?
C. How far did you walk today?
D. What is the length of the street you live on?
Answer:
C
Step-by-step explanation:
The only way to know if you he waked this amount of distance is to know how much they walked today! So the answer is C
Answer: Your answer is C how far did you walk today?
Step-by-step explanation: I did the k12 unit test. (For proof) it has 10 questions. Question number sevens question is Which term describes the distribution of this graph? and part of the name is Unit Test: Data Distribution - Part 1.
Hope it helped please mark me brainliest :D
Henry made a shirt using 1/3 yards of yellow fabric and 1/2 yards of red fabric. How many yards of fabric did he use in all?
Write your answer as a fraction in simplest form.
I think that the answer is 123
PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL PLS PLS HELP HELP ME ITS EASY ITS FREE PONTS LOL
Answer:
42 degrees
Step-by-step explanation:
48 + x = right angle = 90 degrees
48+ x = 90
x = 42 degrees
Which graph best represents this relationship?
distance = 20 x time
OA. graph A
OB. graph B
O C. graph C
OD. graph D
Answer:
graph C represents this relationship best.
What kinds of sports are played by one person?
A. Mixed
B. Individual
C. none of these
D. Team
The measure of angle 1 (10x+8) and the measure of angle 3 (12x-10). What is the measure of angle 2 in degrees? 9 98 82 16
Answer: 82
Step-by-step explanation:
If p varies jointly as q and the cube
of r, and p
= 270 when q = 6 and
r = 3, find p when q = 3 and r = 5.
Answer:
625
Step-by-step explanation:
p= Kqr³
where K is the constant
K = p/qr³ = 270/6•3³
K= 5/3
p = 5/3• qr³
p = 5/3• 3• 5³
p = 5⁴
p= 625
Hope it helps! :)
write the equation of the line that passes through (-7,-4) and (-6,-2) in slope intercept form
Answer:
y = 2x + 10
Step-by-step explanation:
Hi there!
We are given the points (-7, -4) and (-6, -2) and we want to write the equation of the line that passes through these points in slope-intercept form
Slope-intercept form is given as y=mx+b, where m is the slope and b is the y intercept
First, we need to find the slope (m) of the line
The slope can be calculated from 2 points using the formula [tex]\frac{y_2-y_1}{x_2-x_1}[/tex], where [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] are points
We have everything we need to find the slope, but let's label the values of the points to avoid any confusion & and mistakes
[tex]x_1= -7\\y_1=-4\\x_2=-6\\y_2=-2[/tex]
Substitute these values into the formula (note: remember that the formula has subtraction in it!)
m=[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
m=[tex]\frac{-2--4}{-6--7}[/tex]
Simplify
m=[tex]\frac{-2+4}{-6+7}[/tex]
Add the numbers
m=[tex]\frac{2}{1}[/tex]
Divide
m=2
The slope of the line is 2
We can substitute that in:
y = 2x + b
Now we need to find b
As the equation passes through both (-7,-4) and (-6,-2), we can use either point to help solve for b
Taking (-6, -2) for example:
Substitute -6 as x and -2 as y into the equation.
-2 = 2(-6) + b
Multiply
-2 = -12 + b
Add 12 to both sides
-2 = -12 + b
+12 +12
___________
10 = b
Substitute 10 as b.
y = 2x + 10
Hope this helps!
Topic: Finding the equation of a line
See more on this topic here: https://brainly.com/question/27319082
A high school has 44 players on the football team. The summary of the players' weights is given in the box plot. Approximately, what is the percentage of players
weighing greater than or equal to 167 pounds?
The percentage of players weighing greater than or equal to 167 pounds is 75%.
What percentage of students weigh greater than 167 pounds?A box plot is used to study the distribution and level of a set of scores. On the box, the first line to the left represents the lower (first) quartile. 25% of the score represents the lower quartile.
On the box plot, the lower quartile is 167.
Students that weigh greater than 167 = 100 - 25 = 75%
To learn more about box plots, please check: https://brainly.com/question/27215146
#SPJ1
please answer this question
Given that the variables are complex numbers, the value of the complex expression [tex]\frac{\gamma}{\alpha} +\bar{\frac{\alpha}{\beta}}[/tex] is -2
How to solve the complex expression?The given parameters are:
[tex]\alpha + \beta + \gamma = 0[/tex]
[tex]\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 0[/tex]
Rewrite the first equation as:
[tex]\alpha + \beta = - \gamma[/tex]
Take LCM in the second equation
[tex]\frac{\alpha + \beta}{\alpha \beta} + \frac{1}{\gamma} = 0[/tex]
So, we have:
[tex]\frac{ - \gamma}{\alpha \beta} + \frac{1}{\gamma} = 0[/tex]
Rewrite as:
[tex]\frac{1}{\gamma} = \frac{\gamma}{\alpha \beta}[/tex]
Multiply through by [tex]\alpha[/tex]
[tex]\frac{\alpha}{\gamma} = \frac{\gamma}{\beta}[/tex]
Inverse both sides
[tex]\frac{\gamma}{\alpha} = \frac{\beta}{\gamma}[/tex]
Make [tex]\beta[/tex] the subject in [tex]\alpha + \beta + \gamma = 0[/tex]
[tex]\beta =-(\alpha + \gamma)[/tex]
So, we have:
[tex]\frac{\gamma}{\alpha} = \frac{-(\alpha + \gamma)}{\gamma}[/tex]
Expand
[tex]\frac{\gamma}{\alpha} = -\frac{\alpha}{\gamma}- 1[/tex]
This gives
[tex]\frac{\gamma}{\alpha} +\frac{\alpha}{\gamma} = - 1[/tex]
Make [tex]\gamma[/tex] the subject in [tex]\alpha + \beta + \gamma = 0[/tex]
[tex]\gamma = -(\beta + \alpha)[/tex]
So, we have:
[tex]\frac{\gamma}{\alpha} +\frac{\alpha}{-(\beta + \alpha)} = - 1[/tex]
Split
[tex]\frac{\gamma}{\alpha} +\bar{\frac{\alpha}{\beta}} + \frac{\alpha}{\alpha} = - 1[/tex]
Evaluate the quotient
[tex]\frac{\gamma}{\alpha} +\bar{\frac{\alpha}{\beta}} + 1 = - 1[/tex]
Subtract 1 from both sides
[tex]\frac{\gamma}{\alpha} +\bar{\frac{\alpha}{\beta}} = - 2[/tex]
Hence, the value of [tex]\frac{\gamma}{\alpha} +\bar{\frac{\alpha}{\beta}}[/tex] is -2
Read more about complex numbers at:
https://brainly.com/question/10662770
#SPJ1
The area of the pool when viewed from above is approximately 78.5 m2. What is the radius of the pool? (Use 3.14 for pi.)
5 m
11 m
6 m
12 m
Step-by-step explanation:
I guess it is a circular pool.
the area of a circle is
pi×r²
in our case we know
pi×r² = 78.5
3.14×r² = 78.5
r² = 78.5/3.14 = 25
r = 5 m
Kayden walked 18 miles in 6 hours. What was his walking rate in miles per hour?
Answer:
3
Step-by-step explanation:
If he went 18 miles in 6 hours we can simpliy divide 18 by 6 which is 3 miles per hour
Find the sum of the first 20 term of the Series 5+8+11+14+....
Step-by-step explanation:
Sn=n/2(2a+(n-1)d). n=20
S20= 20/2 (2x5+(20-1)3 a=5
S20=10(10+57). d=8-5=3
S20=10x67
S20= 670
Hope this helps you
have a great day
Find the distance between point P and line I
Line I contains points (3,2) and (7,-1). Point P has coordinated (2,9)
Answer: 8
Step-by-step explanation: divion
Answer:
Step-by-step explanation:
please help and ty if u do <33
Answer:
[tex]3^{-5} =\frac{1}{3^{5} } = (\frac{1}{3} )^{5}[/tex]
[tex]5^{-3} = \frac{1}{5} *\frac{1}{5} *\frac{1}{5} = \frac{1}{5*5*5}[/tex]
Step-by-step explanation:
15 and 1/15 do not equal anything.
Hope this helped!
The function g is given by g(x) = ax^2 − b, where a and b are real numbers. If g(2) = −5 and g(−1) = 2, find the values of a and b.
Answer:
a = 1
b = -1
Step-by-step explanation:
[tex]g(x)=ax^2-b \quad \quad \textsf{(where }\:a\:\textsf{ and }\:b\:\textsf{ are real numbers)}[/tex]
Create 2 equations with b as the subject using the given information.
Equation 1
[tex]\begin{aligned}g(2) &=-5\\\implies a(2)^2-b &=-5\\4a-b &=5\\ b&=4a-5\end{aligned}[/tex]
Equation 2
[tex]\begin{aligned}g(-1) &=2\\\implies a(-1)^2-b &=2\\a-b &=2\\ b &=a-2\end{aligned}[/tex]
Equate the equations and solve for a:
[tex]\begin{aligned}b & =b\\\implies 4a-5 & = a-2\\3a & = 3\\a & = 1\\\end{aligned}[/tex]
Substitute the value of a into Equation 2 and solve for b:
[tex]\begin{aligned}b & =a-2\\a=1 \implies b & =1-2\\b & = -1\end{aligned}[/tex]
Answer:
a = -7/3
b = -13/3
Step-by-step explanation:
Making equations in terms of 'a' and 'b' :
g(2) = -5 = a(2)² - b ⇒ 4a - b = -5 [Equation 1]g(-1) = 2 = a(-1)² - b ⇒ a - b = 2 [Equation 2]Subtract : Equation 1 - Equation 2
4a - b - a + b = -5 - 23a = -7a = -7/3Finding b :
-7/3 - b = 2b = -7/3 - 6/3b = -13/3What is the y-value of the vertex of 4x^+ 8x - 8?
Answer: The y-value of the vertex is
Step-by-step explanation: we know that
The equation of a vertical parabola into vertex form is equal to
where
(h,k) is the vertex of the parabola
In this problem we have
-----> this a vertical parabola open upward
Convert to vertex form
Group terms that contain the same variable, and move the constant to the opposite side of the equation
Factor the leading coefficient
Complete the square. Remember to balance the equation by adding the same constants to each side
Rewrite as perfect squares
The vertex is the point
The y-value of the vertex is
Situation:
You invest $100 in an account that pays
an interest rate of 6.5%, compounded
continuously.
Calculate the balance of your account after 6
years. Round your answer to the nearest
hundredth.
[tex]~~~~~~ \textit{Continuously Compounding Interest Earned Amount} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$100\\ r=rate\to 6.5\%\to \frac{6.5}{100}\dotfill &0.065\\ t=years\dotfill &6 \end{cases} \\\\\\ A=100e^{0.065\cdot 6}\implies A=100e^{0.39}\implies A\approx 147.70[/tex]
The balance of your account after 6 years with continuous compounding would be approximately $147.56.
To calculate the balance of your account after 6 years with continuous compounding, you can use the formula:
[tex]\[ A = P \times e^{rt} \][/tex]
where:
[tex]\( A \) =[/tex] the balance after [tex]\( t \)[/tex] years
[tex]\( P \) =[/tex]the principal amount (initial investment) = $100
[tex]\( r \) =[/tex] the annual interest rate (in decimal form) = 6.5% = 0.065
[tex]\( t \) =[/tex] the number of years = 6
[tex]\( e \) =[/tex] Euler's number (approximately 2.71828)
Let's plug in the values and calculate the balance:
[tex]\[ A = 100 \times e^{0.065 \times 6} \]\[ A = 100 \times e^{0.39} \]\[ A = 100 \times 1.47560080488 \]\[ A = 147.560080488 \][/tex]
Rounding the answer to the nearest hundredth:
[tex]\[ A \approx $147.56 \][/tex]
So, the balance of your account after 6 years with continuous compounding would be approximately $147.56.
To know more about balance:
https://brainly.com/question/33704597
#SPJ2
Intelligence Quotient (IQ) scores are often reported to be normally distributed with μ=100.0 and σ=15.0. A random sample of 43 people is taken. Step 1 of 2 : What is the probability of a random person on the street having an IQ score of less than 98? Round your answer to 4 decimal places, if necessary.
Using the normal distribution, it is found that there is a 0.4483 = 44.83% probability of a random person on the street having an IQ score of less than 98.
What is probability?Probability is defined as the ratio of the number of favourable outcomes to the total number of outcomes in other words the probability is the number that shows the happening of the event.
Normal Probability Distribution
In a normal distribution with mean and standard deviation, the z-score of a measure X is given by:
[tex]Z=\dfrac{x-\mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean.After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.In this problem, the mean and the standard deviation are, respectively, given by and.
The probability of a random person on the street having an IQ score of less than 98 is the p-value of Z when X = 98, hence:
[tex]Z=\dfrac{x-\mu}{\sigma}[/tex]
[tex]Z=\dfrac{98-100}{15}[/tex]
[tex]Z=-0.13[/tex]
Has a p-value of 0.4483.
0.4483 = 44.83% probability of a random person on the street having an IQ score of less than 98.
To know more about probability follow
brainly.com/question/24663213
#SPJ1
Calculate the accumulated amount after 3 years, if R5 000 is invested at an interest rate of 10% compounded quarterly?
Answer:
R6,724.44 or so I think that's right
[tex]~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$5000\\ r=rate\to 10\%\to \frac{10}{100}\dotfill &0.10\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four} \end{array}\dotfill &4\\ t=years\dotfill &3 \end{cases} \\\\\\ A=5000\left(1+\frac{0.10}{4}\right)^{4\cdot 3}\implies A=5000(1.025)^{12}\implies A\approx 6724.44[/tex]