4 motor car is approaching a road crossing with a speed of 75 km/hr. A onstable standing near the crossing hears the frequency of its horns 260 Hz. That is the real frequency of horn? The speed of sound in air = 332 m/s. [IOE]​

Answers

Answer 1

Answer:

181 is the answer I think so


Related Questions

an object of volume has 20ml has a mass of 2.5kg what will be its density​

Answers

Answer:

0.125

Explanation:

Density =mass/volume

Density =2.5/20

Density =0.125

Answer:

D=m/v

=2.5kg/(20/1000000)m^3

2.5kg÷0.000002m^3

1250000kgm^-3

Explanation:

20 is divided by 1000000 because m^3 is its si unit

how interfacial angles are determined using contact goinometer​

Answers

Interfacial angles can be measured using a contact goniometer or more precisely using a reflection goniometer. See Klein & Hurlbut's figure 2.40. The interfacial angle between two faces of a mineral crystal is identical for all crystals of the same mineral that exhibit the corresponding two faces.

a volcano that may erupt again at some time in the distant future is

Answers

The answer is a dormant volcano

The masses of two heavenly bodies are 2×10‘16’ and 4×10 ‘22’ kg respectively and the distance between than is 30000km. find the gravitational force between them ? ans. 2.668× 10-9N​

Answers

[tex]F = 5.93×10^{13}\:\text{N}[/tex]

Explanation:

Given:

[tex]m_1= 2×10^{16}\:\text{kg}[/tex]

[tex]m_2= 4×10^{22}\:\text{kg}[/tex]

[tex]r = 30000\:\text{km} = 3×10^7\:\text{m}[/tex]

Using Newton's universal law of gravitation, we can write

[tex]F = G\dfrac{m_1m_2}{r^2}[/tex]

[tex]\:\:\:\:=(6.674×10^{-11}\:\text{N-m}^2\text{/kg}^2)\dfrac{(2×10^{16}\:\text{kg})(4×10^{22}\:\text{kg})}{(3×10^7\:\text{m})^2}[/tex]

[tex]\:\:\:\:= 5.93×10^{13}\:\text{N}[/tex]

a stone is thrown vertically upwards with a velocity of 20 m per second determine the total time of flight of stone in air​

Answers

Answer:

Explanation:

The best way to do this is to remember the rule about the halfway mark in a parabolic path. At a trajectory's half way point in its travels, it will be at its max height. To get the total time in the air, we take that time at half way and double it. Here's what we know that we are told:

initial velocity is 20 m/s

Here's what we know that we are NOT told:

a = -9.8 m/s/s and

final velocity is 0 at an object's max height in parabolic motion.

We will use the equation:

[tex]v=v_0+at[/tex] where v is final velocity and v0 is initial velocity. Filling in:

0 = 20 + (-9.8)t and

-20 = -9.8t so

t = 2 seconds. The stone reaches its max height 2 seconds after it is thrown; that means that after another 2 seconds it will be on the ground. Total air time is 4 seconds.

Please help, I really need this. Thanks

Answers

Answer

Delta Q = change in thermal energy = c M * change in temperature

change in temperature = Q / (c * M)

change in temperature = -12 J  / (390 J / Kg*deg * .012 kg

change in temp = -12 / (390 * .012) =  - 2.56 deg C

2. What is the average speed of an athlete who runs 1500 m in 4 minutes?

Answers

Answer:

375 is the answer.

Explanation:

Speed : Distance / Time taken

S: m/ s

s: 1500/4

375 m / s answer

Answer:

375m per minute

Explanation:

if you are looking for a diffrent unit just multiply your answer by however many minutes are in that time frame

What is the principle of potentiometer?​

Answers

Answer:

The principle of a potentiometer is that the potential dropped across a segment of a wire of uniform cross-section carrying a constant current is directly proportional to its length. The potentiometer is a simple device used to measure the electrical potentials (or compare the e.m.f of a cell).

Explanation:

I hope it will help you

what are three effects of gravity

Answers

Answer:

effect on motation.effect on direction

A spherical, concave shaving mirror has a radius of curvature of 0.983 m. What is the magnification of a person's face when it is 0.155 m from the vertex of the mirror (answer sign and magnitude)

Answers

Answer:

Magnification = 1

Explanation:

given data

radius of curvature r = - 0.983 m

image distance u = - 0.155

solution

we get here first focal length that is

Focal length, f = R/2     ...................1

f = -0.4915 m

we use here formula that is

[tex]\frac{1}{v} + \frac{1}{u} + \frac{1}{f}[/tex]      .................2

put here value and we get

[tex]\frac{1}{v} = \frac{1}{0.155} - \frac{1}{4915}[/tex]  

v = 0.155 m

so

Magnification will be here as

m = [tex]- \frac{v}{u}[/tex]

m =  [tex]\frac{0.155}{0.155}[/tex]

m = 1

Answer:

The magnification is 1.5.

Explanation:

radius of curvature, R = - 0.983 m

distance of object, u = - 0.155 m

Let the distance of image is v.

focal length, f = R/2 = - 0.492 m

Use the mirror equation

[tex]\frac{1}{f}=\frac{1}{v}+\frac {1}{u}\\\\\frac{-1}{0.492}=\frac{1}{v}-\frac{1}{0.155}\\\\\frac{1}{v}=\frac{1}{0.155}-\frac{1}{0.492}\\\\\frac{1}{v}=\frac{0.492-0.155}{0.155\times 0.492}\\\\\frac{1}{v}=\frac{0.337}{0.07626}\\ \\v = 0.226 m[/tex]

The magnification is given by

m = - v/u

m = 0.226/0.155

m = 1.5

. A ball of mass 0.50 kg is rolling across a table top with a speed of 5.0 m/s. When the ball reaches the edge of the table, it rolls down an incline onto the floor 1.0 meter below (without bouncing). What is the speed of the ball when it reaches the floor?

Answers

Answer:

4

Explanation:

A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 ksi. The bar is subjected to a steady torsional stress of 15 kpsi and an alternating bending stress of 25 ksi. Find the factor of safety guarding against a static failure, and either the factor of safety guarding against a fatigue failure or the expected life of the part. For the fatigue analysis use Modified Goodman criterion.

Answers

Answer:

The correct solution is:

(a) 1.66

(b) 1.05

Explanation:

Given:

Bending stress,

[tex]\sigma_b = 25 \ kpsi[/tex]

Torsional stress,

[tex]\tau= 15 \ kpsi[/tex]

Yield stress of steel bar,

[tex]\delta_y = 60 \ kpsi[/tex]

As we know,

⇒ [tex]\sigma_{max}^' \ = \sqrt{\sigma_b^2 + 3 \gamma^2}[/tex]

        [tex]= \sqrt{(25)^2+3(15)^2}[/tex]

        [tex]=36.055 \ kpsi[/tex]

(a)

The factor of safety against static failure will be:

⇒ [tex]\eta_y = \frac{\delta_y}{\sigma_{max}^'}[/tex]

By putting the values, we get

        [tex]=\frac{60}{36.055}[/tex]

        [tex]=1.66[/tex]

(b)

According to the Goodman line failure,

[tex]\sigma_a = \sigma_b = 25 \ kpsi[/tex]

[tex]S_e = 40 \ kpsi[/tex]

[tex]\sigma_m = \sqrt{3} \tau[/tex]

     [tex]=\sqrt{3}\times 15[/tex]

     [tex]=26 \ kpsi[/tex]

[tex]Sut = 80 \ kpsi[/tex]

⇒ [tex]\frac{\sigma_a}{S_e} +\frac{\sigma_m}{Sut} =\frac{1}{\eta_y}[/tex]

      [tex]\frac{25}{40}+\frac{26}{80}=\frac{1}{\eta_y}[/tex]

              [tex]\eta_y = 1.05[/tex]

A converging lens is used to focus light from a small bulb onto a book. The lens has a focal length of 10.0 cm and is located 40.0 cm from the book. Determine the distance from the lens to the light bulb.

Answers

Answer:

[tex]u=13.3cm[/tex]

Explanation:

From the question we are told that:

Focal Length [tex]F=10.0cm[/tex]

Distance [tex]d=40cm[/tex]

Generally the equation for Focal length  is mathematically given by

[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}[/tex]

[tex]\frac{1}{10}=\frac{1}{u}+\frac{1}{40}[/tex]

[tex]\frac{1}{u}=\frac{3}{40}[/tex]

[tex]u=13.3cm[/tex]

Focal length is the distance from the center of the lens to principle foci.  The distance of the from the lens to the light bulb is 13.3 cm.

The distance can be determined by the formula,

[tex]\bold {\dfrac 1{f} = \dfrac 1{u} + \dfrac 1{v} }[/tex]

Where,

f - focal length = 10 cm

u - distance of object = ?

v = distance of image = 40 cm

Put the values in the equation,

[tex]\bold {\dfrac 1{10} = \dfrac 1{u} + \dfrac 1{40} }\\\\\bold {\dfrac 1{u} = \dfrac 3{40}}\\\\\bold {\dfrac 1{u} = 13.3 cm}[/tex]

Therefore, the distance of the from the lens to the light bulb is 13.3 cm.

To know more about the focal length,

https://brainly.com/question/13091382

A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of 0.235 A. A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.40 s.

Required:
a. What average emf is induced in the second coil if it has a diameter of 3.5 cm and N = 7?
b. What is the induced emf if the diameter is 7.0 cm and N = 10?

Answers

Answer:

a) ε = 14.7 μv

b) ε = 21 μv

Explanation:

Given the data in the question;

Diameter of solenoid; d = 3 cm

radius will be half of diameter,  so, r = 3 cm / 2 = 1.5 cm = 1.5 × 10⁻² m

Number of turns; N = 40 turns per cm = 4000 per turns per meter

Current; [tex]I[/tex] = 0.235 A

change in time Δt = 0.40 sec

Now,

We determine the magnetic field inside the solenoid;

B = μ₀ × N × [tex]I[/tex]  

we substitute

B = ( 4π × 10⁻⁷ Tm/A ) × 4000 × 0.235  

B = 1.1881 × 10⁻³ T

Now, Initial flux through the coil is;

∅₁ = NBA = NBπr²  

and the final flux  

∅₂ = 0        

so, the εmf induced ε = -Δ∅/Δt = -( ∅₂ - ∅₁ ) / Δt

= -( 0 - NBπr² ) / Δt  

= NBπr² / Δt    

a)

for N = 7

ε = [ 7 × ( 1.1881 × 10⁻³ ) × π( 1.5 × 10⁻² )² ] / 0.40

ε = 14.7 × 10⁻⁶ v

ε = 14.7 μv      

b)

for N = 10

ε = [ 10 × ( 1.1881 × 10⁻³ ) × π( 1.5 × 10⁻² )² ] / 0.40

ε = 21 × 10⁻⁶ v

ε = 21 μv  

 

A roller coaster has a vertical loop with radius 25.7 m. With what minimum speed should the roller-coaster car be moving at the top of
the loop so that the passengers do not lose contact with the seats?
m/s

Answers

Answer:

15.88m/s

Explanation:

At the top of the roller coaster you will have three forces acting on the roller-coaster. See the image below. Fc is the centripetal force (for an object in circular motion), Fg is the gravitational force, and Fn is the normal force. To achieve the minimum speed we assume the roller-coaster is barely touching the vertical loop and so the normal force is zero. This leaves two acting forces.

[tex]F_g = F_c\\mg = \frac{m\times v^2}{r}\\v = \sqrt{gr} = \sqrt{9.81 \times 25.7} = 15.88 m/s[/tex]

If a jet travels 350 m/s, how far will it travel each second?

Answers

Answer:

350

Explanation:

Since it travels 350 meters per second, the jet will travel 350 meters in one second.

Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the nozzle is 60 cm2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle

Answers

a) The mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle is 23.6 cm².

a) The mass flow rate through the nozzle can be calculated with the following equation:

[tex] \dot{m_{i}} = \rho_{i} v_{i}A_{i} [/tex]

Where:

[tex]v_{i}[/tex]: is the initial velocity = 20 m/s

[tex]A_{i}[/tex]: is the inlet area of the nozzle = 60 cm²  

[tex]\rho_{i}[/tex]: is the density of entrance = 2.21 kg/m³

[tex] \dot{m} = \rho_{i} v_{i}A_{i} = 2.21 \frac{kg}{m^{3}}*20 \frac{m}{s}*60 cm^{2}*\frac{1 m^{2}}{(100 cm)^{2}} = 0.27 kg/s [/tex]  

Hence, the mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle can be found with the Continuity equation:

[tex] \rho_{i} v_{i}A_{i} = \rho_{f} v_{f}A_{f} [/tex]

[tex] 0.27 kg/s = 0.762 kg/m^{3}*150 m/s*A_{f} [/tex]

[tex] A_{f} = \frac{0.27 kg/s}{0.762 kg/m^{3}*150 m/s} = 0.00236 m^{2}*\frac{(100 cm)^{2}}{1 m^{2}} = 23.6 cm^{2} [/tex]

Therefore, the exit area of the nozzle is 23.6 cm².

You can find another example of mass flow rate here: https://brainly.com/question/13346498?referrer=searchResults

I hope it helps you!                                                                   

a) Mass flow rate through the nozzle: 0.265 kilograms per second, b) Exit area of the nozzle: 23.202 square centimeters.

We determine the Mass Flow Rate through the nozzle and the Exit Area of the nozzle by means of the Principle of Mass Conservation. A nozzle is a device that works at Steady State, so that Mass Balance can be reduced into this form:

[tex]\dot m_{in} = \dot m_{out}[/tex] (1)

Where:

[tex]\dot m_{in}[/tex] - Inlet mass flow, in kilograms per second.

[tex]\dot m_{out}[/tex] - Outlet mass flow, in kilograms per second.

Given that air flows at constant rate, we expand (1) by dimensional analysis:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex] (2)

Where:

[tex]\rho_{in}, \rho_{out}[/tex] - Air density at inlet and outlet, in kilograms per cubic meter.

[tex]A_{in}, A_{out}[/tex] - Inlet and outlet area, in square meters.

[tex]v_{in}, v_{out}[/tex] - Inlet and outlet velocity, in meters per second.

a) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex] and [tex]v_{in} = 20\,\frac{m}{s}[/tex], then the mass flow rate through the nozzle is:

[tex]\dot m = \rho_{in}\cdot A_{in}\cdot v_{in}[/tex]

[tex]\dot m = \left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)[/tex]

[tex]\dot m = 0.265\,\frac{kg}{s}[/tex]

The mass flow rate through the nozzle is 0.265 kilograms per second.

b) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex], [tex]v_{in} = 20\,\frac{m}{s}[/tex], [tex]\rho_{out} = 0.762\,\frac{kg}{m^{3}}[/tex] and [tex]v_{out} = 150\,\frac{m}{s}[/tex], then the exit area of the nozzle is:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex]

[tex]A_{out} = \frac{\rho_{in}\cdot A_{in}\cdot v_{in}}{\rho_{out}\cdot v_{out}}[/tex]

[tex]A_{out} = \frac{\left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)}{\left(0.762\,\frac{kg}{m^{3}} \right)\cdot \left(150\,\frac{m}{s} \right)}[/tex]

[tex]A_{out} = 2.320\times 10^{-3}\,m^{2}[/tex]

[tex]A_{out} = 23.202\,cm^{2}[/tex]

The exit area of the nozzle is 23.202 square centimeters.

how does laser works ?

Answers

Explanation:

Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.

What is a measure between the difference in start and end positions?

Answers

Answer:

Displacement

General Formulas and Concepts:

Kinematics

Displacement vs Total Distance

Explanation:

Displacement is the difference between the start position and end position.

Total Distance is the entire distance traveled between the start and end position.

Topic: AP Physics 1 Algebra-Based

Unit: Kinematics

1. There is a famous intersection in Kuala Lumpur, Malaysia, where thousands of vehicles pass each hour. A 750 kg Tesla Model S traveling south crashes into a 1250 kg Ford F-150 traveling east. What are the initial speeds of each vehicle before collision if they stick together after crashing into each other and move at an angle of 320 and a common velocity of 18 m/s.

Answers

Solution :

Let the positive [tex]x-axis[/tex] is along the East and the positive [tex]y[/tex] direction is along the north.

Given :

Mass of the Tesla car, [tex]m_1[/tex] = [tex]750 \ kg[/tex]

Mass of the Ford car, [tex]m_2 = 1250 \ kg[/tex]

Now let the initial velocity of Tesla car in the south direction be = [tex]-v_1j[/tex]

The initial momentum of Tesla car, [tex]p_1 = -750 \ v_1[/tex]

Let the initial velocity of Ford car in the east direction be = [tex]v_2 \ i[/tex]

So the initial momentum of the Ford car is [tex]p_2=1250\ v_2 \ i[/tex]

Therefore, the initial velocity of both the cars is [tex]p_i = p_1+p_2[/tex]

                                                                  [tex]=1250 \ v_2 \ i - 750\ v_1 \ j[/tex]

Now the final velocity of both the cars is [tex]v = 18 \ m/s[/tex]

So the vector form is :

[tex]v = 18\cos 32\ i-18 \sin 32 \ j[/tex]

  [tex]= 15.26 \ i - 9.54 \ j[/tex]

Therefore the momentum after the accident is

[tex]p_f=(m_1+m_2) \times v[/tex]

    [tex]=(750+1250) \times (15.26 \ i - 9.54 \ j)[/tex]

    [tex]= 30520\ i -19080\ j[/tex]

According to the law of conservation of momentum, we know

[tex]p_i = p_f[/tex]

[tex]1250 \ v_2 \ i - 750\ v_1 \ j[/tex]  [tex]= 30520\ i -19080\ j[/tex]

[tex]1250 \ v_2 = 30520[/tex]

[tex]v_2=24.4 \ m/s[/tex]

From, [tex]750\ v_1 = 19080[/tex]

We get, [tex]v_1=25.4 \ m/s[/tex]

Therefore the speed of Tesla car before collision = 25.4 m/s

The speed of ford car before collision = 24.4 m/s

The instrument includes a light source, which is passed through a Choose... , which isolates a single wavelength to pass through an aperture to reach the Choose... . Then, the light travels to the Choose... , which measures the intensity of light reaching it.

Answers

Answer:

Following are the response to the given question:

Explanation:

It's being used to measure the amount of light absorbed after traveling through a test tube (the amount of solar radiation received). For several quantitative estimations, this technique is widely employed. Spectrometer and Spectrometer were two devices that are used together to light intensity and light intensity.

It creates and diffuses phosphorescent light into the selected frequency, while the Spectrometer measures the strength of attenuation by the sample solution.

Diffraction beams or prisms are being used to convert polychromatic illumination into monochrome light.

Afterward, the sunlight has a certain hue. Once it reaches the specimen cuvette, it begins absorption. It falls on a sensor that transforms its intensity into such an electronic current.

Here are some ways to fill in such gaps:

In order to reach the specimen cuvette, the light from the light source must be routed via an aperture in order to be isolated by either a diffraction pattern. Light travels to the detector, which detects its intensity.

The coefficients of friction between a race cars tyres and the track surface are

Answers

the question is about tyres of a race car, which are made of rubber and will be in contact with a race track, which is generally made from asphalt, the static coefficient of friction is in the range of (0.5–0.8), in dry conditions (Source: Friction and Friction Coefficients ).

Explanation:

please mark me as a brainlieast

A bullet 2cm log is fired at 420m/s and passes straight a 10cm thick board exiting at 280m/s

Answers

Complete question:

A bullet 2 cm long is fired at 420m/s and passes straight through a 10.0 cm thick board, exiting at 280m/s? What is the average acceleration of the bullet through the board?

Answer:

The average acceleration of the bullet through the board is -4.083 x 10⁵ m/s²

Explanation:

Given;

initial velocity of the bullet, u = 420 m/s

final velocity of the bullet, v = 280 m/s

length of the bullet, d₁ = 2 cm

thickness of the board, d₂ = 10 cm

total distance penetrated by the bullet through the board;

d = d₁ + d₂ = 2 cm + 10 cm = 12 cm = 0.12 m

The average acceleration of the bullet through the board is calculated as;

[tex]v^2 = u^2 + 2ad\\\\2ad = v^2 - u^2\\\\a = \frac{v^2 - u^2}{2d} \\\\a = \frac{(280^2) - (420^2)}{2(0.12)} = -4.083 \times 10^{5} \ m/s^2[/tex]

Therefore, the average acceleration of the bullet through the board is -4.083 x 10⁵ m/s²

En la siguiente expresión matemáticas w=mg el peso w con relación a se relaciona con la masa m en una proporción
a) Directamente proporcional b) Inversamente proporcional c) Es constante
d) Ninguna de las anteriore

Answers

Answer:

a) Directamente proporcional

Explanation:

El peso se puede definir como la fuerza que actúa sobre un cuerpo o un objeto como resultado de la gravedad.

Matemáticamente, el peso de un objeto viene dado por la fórmula;

[tex] Peso = mg [/tex]

Donde;

m es la masa del objeto.

g es la aceleración debida a la gravedad.

De la expresión matemática, podemos deducir que el valor del peso de un objeto es directamente proporcional a la masa del objeto.

Por lo tanto, un aumento en la masa de un objeto provocaría un aumento en el peso del objeto y viceversa.

What is mechanical advantage?
O A. Output force divided by input force
O B. Input work divided by output work
O C. Output work divided by input work
O D. Input force divided by output force

Answers

Answer:

0A.Output force divided by input force.

Consider two points in an electric field. The potential at point 1, V1, is 33 V. The potential at point 2, V2, is 175 V. An electron at rest at point 1 is accelerated by the electric field to point 2.

Required:
Write an equation for the change of electric potential energy ΔU of the electron in terms of the symbols given.

Answers

Answer:

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

Explanation:

Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.

Substituting the values of the variables into the equation, we have

ΔV = V₂ - V₁.

ΔV = 175 V - 33 V.

ΔV = 142 V

The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.

So, substituting the values of the variables into the equation, we have

ΔU = eΔV

ΔU = eΔV

ΔU = -1.602 × 10⁻¹⁹ C × 142 V

ΔU = -227.484 × 10⁻¹⁹ J

ΔU = -2.27484 × 10⁻²¹ J

ΔU ≅ -2.275 × 10⁻²¹ J

So, the required equation for the electric potential energy change is

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

What is the Ah rating of a battery that can provide 0.8 A for 76 h?

Answers

Answer:

6.08

Explanation:

Given that,

Current, I = 0.8 A

Time, t = 76 h

We need to find the Ah rating of a battery. It can be calculated by taking the product of current and time. So,

Ah = (0.8)(76)

= 6.08 Ah

So, the Ah rating of the battery is 6.08.

26. A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?

Answers

Answer:

Explanation:

The formula for determining the Emf induced in a loop is:

[tex]\varepsilon = \dfrac{d \phi}{dt}[/tex]

[tex]\varepsilon = \dfrac{d (B*A)}{dt}[/tex]

[tex]\varepsilon = A \times \dfrac{dB}{dt}[/tex]

[tex]\varepsilon = (side (l))^2 \times \dfrac{dB}{dt}[/tex]

where;

square area A = ( l²)

l² = 6.0 cm = 6.0 × 10⁻²

[tex]\varepsilon = ( 6.0 \times 10^{-2})^2 \times 5.0 \times 10^{-3} \ T/S[/tex]

[tex]\varepsilon =18 \times 10^{6} \ V[/tex]

Recall that:

The resistivity of copper = [tex]1.68 \times 10^{-8}[/tex] ohm m

We can as well say that the length of the copper wire = perimeter of the square loop;

The perimeter of the square loop = 4L

Thus, the length of the copper wire  = 4 (6.0 × 10⁻² )m

= 24× 10⁻² m

Finally, the current in the loop is determined from the formula:

V = IR

where,

V = voltage

I = current and R = resistance of the wire

Making "I" the subject:

I = V/R

where;

[tex]R = \dfrac{\rho \times l}{A}[/tex]

[tex]R = \dfrac{\rho \times l}{\pi * r^2}[/tex]

[tex]R = \dfrac{1.68 *10^{-8} \times 24*10^{-2}}{\pi * (1*10^{-3})^2}[/tex]

[tex]R = 0.001283 \ ohms[/tex]

[tex]I = \dfrac{18*10^{-6}}{0.001283}[/tex]

I = 14.029 mA

if 6000j of energy is supplid to a machine to lift a load of 300N through a vvertical height of 1M calculatework out put​

Answers

Answer:

300J

Explanation:

Work done = Force x the distance travelled in the direction of the force

=300 x 1

=300J

If a conducting loop of radius 10 cm is onboard an instrument on Jupiter at 45 degree latitude, and is rotating with a frequency 2 rev/s; What is the maximum emf induced in this loop? If its resistance is 0.00336 ohms, how much current is induced in this loop? And what is the maximum power dissipated in the loop due to its rotation in Jupiter's magnetic field?

Answers

Answer:

a)  fem = - 2.1514 10⁻⁴ V,  b) I = - 64.0 10⁻³ A, c)    P = 1.38  10⁻⁶ W

Explanation:

This exercise is about Faraday's law

         fem = [tex]- \frac{ d \Phi_B}{dt}[/tex]

where the magnetic flux is

        Ф = B x A

the bold are vectors

        A = π r²

we assume that the angle between the magnetic field and the normal to the area is zero

         fem = - B π 2r dr/dt = - 2π B r v

linear and angular velocity are related

        v = w r

        w = 2π f

        v = 2π f r

we substitute

        fem = - 2π B r (2π f r)

        fem = -4π² B f r²

For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T

we reduce the magnitudes to the SI system

       f = 2 rev / s (2π rad / 1 rev) = 4π Hz

we calculate

       fem = - 4π² 428 10⁻⁶ 4π 0.10²

       fem = - 16π³ 428 10⁻⁶ 0.010

       fem = - 2.1514 10⁻⁴ V

for the current let's use Ohm's law

        V = I R

        I = V / R

         I = -2.1514 10⁻⁴ / 0.00336

         I = - 64.0 10⁻³ A

Electric power is

        P = V I

        P = 2.1514 10⁻⁴ 64.0 10⁻³

        P = 1.38  10⁻⁶ W

Other Questions
Twin skaters approach each other with identical speeds. Then, the skaters lock hands and spin. Calculate their final angular velocity, given each had an initial speed of 2.50 m/s relative to the ice. Each has a mass of 70.0 kg, and each has a center of mass located 0.800 m from their locked hands. You may approximate Three professional healthsector the tangent of theta is 1, the terminal side of theta lies in the 3rd quadrant. what is a possible value for theta? give your answer in radians or degrees Brazil, Russia, India, China, and South Africa, also known as BRICS, are emerging countries poised to be dominant economic players in the 21st century. What are some of the political, legal and economic conditions that help or hinder economic expansion for these countries? De que tipo son estas oraciones? (simple,compound, complex)Since I have memories, I have loved ChristmasAfter dinner, my mother goes to sleep early You must submit a report to the DMV within 15 days of a traffic accident on a Traffic accident report form. True or false? Help. The graph shows the system of equations below. 2x -3y = -6 y = - 1/3x -4 is important to the transmission of nerve impulses.a) Zincb) Calciumc) Sodiumd) IronPlease help thx In the reoxidation of QH2 by purified ubiquinone-cytochrome c reductase (Complex III) from heart muscle, the overall stoichiometry of the reaction requires 2 mol of cytochrome c per mole of QH2 because: 9. In the following sentence, which word is the possessive pronoun being used as an adjective?He put his hand on the top of the table.hetoptablehis Find the value of the trigonometric ratio.simply the fraction if needed. NEED HELP ASAP!!! IM BEING TIMED OUT!!!! can you guys help with those questiong Cho lc F =6x^3 i -4yj tc dng ln vt lm vt chuyn ng t A(-2,5) n B(4,7). Vy cng ca lc l: (b) How can social problems and evils be controlled? Suggest two measures. What factors make this a strong conclusion? Selecttwo optionsIt introduces new evidence.Read the paragraphUltimately, stress affects individuals in different ways atdifferent times throughout their lives. Finding methodsfor appropriately managing and reducing stress canhelp with overall well-being and productivity. Somemethods that have been deemed effective aremeditation yoga, breathing techniques, creatingproductivity and priority lists, and being open aboutindividual strengths and capabilities with othersImplementing these methods for managing stress canhelp reduce the negative effects of stress.It sets up the thesis statement.It summarizes the main ideas.It includes strong topic sentences.It reviews the supporting evidence.Mark this and retum Which of the following is an input for cellular respiration? a CO2 b. HO C. sunlight d O2 6). One unique element of the Irish migration was...A. the unwillingness of the Irish to work as manual laborers. B. the number of single women who made the journey. C. the lack of a cohesive ethnic identity. D. None of the answers provided are true. Market Targeting l g ? Simplify tan(arcsec 1)